Study of the Properties of Compositions Based on Polylactic Acid and Thermoplastic Starch

Article Preview

Abstract:

The use of thermoplastic starch in compositions based on polylactic acid is of interest from the point of view of controlling the physicomechanical properties of materials and the time of biodegradation. The effect of thermoplastic starch containing sorbitol and / or glycerin as plasticizers on the resistance of compositions based on polylactic acid to thermal and thermomechanical action was studied. The physicomechanical properties of the compositions and their resistance to biodegradation under composting conditions have also been determined.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

164-171

Citation:

Online since:

September 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Chandra, R. & Rustgi, R. Biodegradable Polymers. Prog. Polym. Sci. 23, 1273–1335 (1998).

Google Scholar

[2] Vroman, I. & Tighzert, L. Biodegradable polymers. Materials (Basel). 2, 307–344 (2009).

Google Scholar

[3] Gotlib, E. M., Vdovina, T. V. & Yamaleeva, E. S. Increasing the biodegradability of epoxy materials by means of vegetable oils and their oxygenated derivatives. Proc. Univ. Appl. Chem. Biotechnol. 4, 700–707 (2020).

DOI: 10.21285/2227-2925-2020-10-4-700-707

Google Scholar

[4] Gotlib, E. at all. Agricultural by-products as advanced raw materials for obtaining modifiers and fillers for epoxy materials. Key Eng. Mater. 822, 343–349 (2019).

DOI: 10.4028/www.scientific.net/kem.822.343

Google Scholar

[5] Gupta, B., Revagade, N. & Hilborn, J. Poly(lactic acid) fiber: An overview. Prog. Polym. Sci. 32, 455–482 (2007).

DOI: 10.1016/j.progpolymsci.2007.01.005

Google Scholar

[6] Galimzyanova, R. Y., Mevliyanova, M. D. & Hisamieva, D. R. The Use of Polylactic Acid to Obtain Biodegradable Medical Devices. 816, 285–289 (2019).

DOI: 10.4028/www.scientific.net/kem.816.285

Google Scholar

[7] Posvyashchennaya, A., Volgina, T., Novikov, V. & Zinovyev, A. Lactide production from polymer waste. Key Eng. Mater. 769 KEM, 17–22 (2018).

DOI: 10.4028/www.scientific.net/kem.769.17

Google Scholar

[8] George, G., Joseph, K., Boudenne, A. & Thomas, S. Recent advances in green composites. Key Eng. Mater. 425, 107–166 (2010).

Google Scholar

[9] Hamad, K., Kaseem, M., Ayyoob, M., Joo, J. & Deri, F. Polylactic acid blends: The future of green, light and tough. Prog. Polym. Sci. 85, 83–127 (2018).

DOI: 10.1016/j.progpolymsci.2018.07.001

Google Scholar

[10] Volfson, S. I., Zakirova, L. Y., Karaseva, Y. S. & Nigmatullin, A. I. Effect of the technological additives on the properties of recycled polyolefins. Key Eng. Mater. 816 KEM, 90–95 (2019).

DOI: 10.4028/www.scientific.net/kem.816.90

Google Scholar

[11] Lasprilla, A. J. R., Martinez, G. A. R., Lunelli, B. H., Jardini, A. L. & Filho, R. M. Poly-lactic acid synthesis for application in biomedical devices - A review. Biotechnol. Adv. 30, 321–328 (2012).

DOI: 10.1016/j.biotechadv.2011.06.019

Google Scholar

[12] Avérous, L. Polylactic acid: Synthesis, properties and applications. Monomers, Polym. Compos. from Renew. Resour. 433–450 (2008).

DOI: 10.1016/b978-0-08-045316-3.00021-1

Google Scholar

[13] Lisanevich, M. S. at all. Effect of processing conditions on the structure and properties of polypropylene spunbond fabrics. Key Eng. Mater. 822, 355–361 (2019).

Google Scholar

[14] Galimzyanova, R. Y., Lisanevich, M. S., Rakhmatullina, E. R. & Khakimullin, Y. N. Medical nonwovens: Effects of radiation sterilization on bursting strength. Key Eng. Mater. 869 KEM, 101–106 (2020).

DOI: 10.4028/www.scientific.net/kem.869.101

Google Scholar

[15] Rakhmatullina, E. R., Lisanevich, M. S., Galimzyanova, R. Y. & Khakimullin, Y. N. The effect of radiation sterilization on the stress-strain properties of non-woven materials-based on polypropylene. Mater. Sci. Forum 992 MSF, 403–408 (2020).

DOI: 10.4028/www.scientific.net/msf.992.403

Google Scholar

[16] Lunt, J. & Shafer, A. L. Polylactic acid polymers from corn. Applications in the Textile industry. J. Ind. Text. 29, 191–205 (2000).

DOI: 10.1106/lvy7-vbvf-v8lr-l5at

Google Scholar

[17] Phattarateera, S., Junsook, N., Kumsang, P., Aontee, A. & Kerddonfag, N. The ternary blends of tps/pbat/pla films: A study on the morphological and mechanical properties. Key Eng. Mater. 861 KEM, 170–175 (2020).

DOI: 10.4028/www.scientific.net/kem.861.170

Google Scholar

[18] Ferrarezi, M. M. F., de Oliveira Taipina, M., da Silva, L. C. E. & Gonçalves, M. do C. Poly(Ethylene Glycol) as a Compatibilizer for Poly(Lactic Acid)/Thermoplastic Starch Blends. J. Polym. Environ. 21, 151–159 (2013).

DOI: 10.1007/s10924-012-0480-z

Google Scholar

[19] Xiong, Z. at all. Effect of castor oil enrichment layer produced by reaction on the properties of PLA/HDI-g-starch blends. Carbohydr. Polym. 94, 235–243 (2013).

DOI: 10.1016/j.carbpol.2013.01.038

Google Scholar

[20] Ferri, J. M., Garcia-Garcia, D., Sánchez-Nacher, L., Fenollar, O. & Balart, R. The effect of maleinized linseed oil (MLO) on mechanical performance of poly(lactic acid)-thermoplastic starch (PLA-TPS) blends. Carbohydr. Polym. 147, 60–68 (2016).

DOI: 10.1016/j.carbpol.2016.03.082

Google Scholar

[21] Oksman, K., Skrifvars, M. & Selin, J. F. Natural fibres as reinforcement in polylactic acid (PLA) composites. Compos. Sci. Technol. 63, 1317–1324 (2003).

DOI: 10.1016/s0266-3538(03)00103-9

Google Scholar

[22] Dangtungee, R., Srisuk, R. & Siengchin, S. Rice bran/poly(lactic acid) composites in packaging product. Adv. Mater. Res. 931–932, 57–62 (2014).

DOI: 10.4028/www.scientific.net/amr.931-932.57

Google Scholar

[23] Jalalvandi, E., Ghanbari, T., Cherghibidsorkhi, H., Zeimaran, E. & Ilbeygi, H. Processing, thermal behavior and tensile properties of pla/thermoplastic starch/montmorillonite nanocomposites. Adv. Mater. Res. 684, 75–79 (2013).

DOI: 10.4028/www.scientific.net/amr.684.75

Google Scholar

[24] Chabrat, E., Abdillahi, H., Rouilly, A. & Rigal, L. Influence of citric acid and water on thermoplastic wheat flour/poly(lactic acid) blends. I: Thermal, mechanical and morphological properties. Ind. Crops Prod. 37, 238–246 (2012).

DOI: 10.1016/j.indcrop.2011.11.034

Google Scholar

[25] Rasal, R. M., Janorkar, A. V. & Hirt, D. E. Poly(lactic acid) modifications. Prog. Polym. Sci. 35, 338–356 (2010).

DOI: 10.1016/j.progpolymsci.2009.12.003

Google Scholar

[26] Noivoil, N. & Yoksan, R. Oligo(lactic acid)-grafted starch: A compatibilizer for poly(lactic acid)/thermoplastic starch blend. Int. J. Biol. Macromol. 160, 506–517 (2020).

DOI: 10.1016/j.ijbiomac.2020.05.178

Google Scholar

[27] Yang, X., Finne-Wistrand, A. & Hakkarainen, M. Improved dispersion of grafted starch granules leads to lower water resistance for starch-g-PLA/PLA composites. Compos. Sci. Technol. 86, 149–156 (2013).

DOI: 10.1016/j.compscitech.2013.07.013

Google Scholar

[28] Il'icheva, E. S., Khusainov, A. D., E.N., C. & E.M., G. High-molecular-weight modifiers with graft anhydride and imide groups: effect on the adhesion, rheological, and physicomechanical properties of rubber compounds. Int. Polym. Sci. Technol. 42, 117–120 (2015).

DOI: 10.1177/0307174x1504200604

Google Scholar

[29] Vindizheva, A., Khashirova, S. & Kalabin, A. Biologically destroyable polymer compositions with the use of natural filler. Key Eng. Mater. 869 KEM, 501–507 (2020).

DOI: 10.4028/www.scientific.net/kem.869.501

Google Scholar

[30] De Macedo, J. R. N. & Dos Santos Rosa, D. Effect of fiber and starch incorporation in biodegradation of PLA-TPS Cotton composites. Key Eng. Mater. 668, 54–62 (2016).

DOI: 10.4028/www.scientific.net/kem.668.54

Google Scholar

[31] Teixeira, E. de M. at all. Properties of thermoplastic starch from cassava bagasse and cassava starch and their blends with poly (lactic acid). Ind. Crops Prod. 37, 61–68 (2012).

DOI: 10.1016/j.indcrop.2011.11.036

Google Scholar

[32] Bocz, K. at all. Flax fibre reinforced PLA/TPS biocomposites flame retarded with multifunctional additive system. Polym. Degrad. Stab. 106, 63–73 (2014).

DOI: 10.1016/j.polymdegradstab.2013.10.025

Google Scholar

[33] Yokesahachart, C. & Yoksan, R. Effect of amphiphilic molecules on characteristics and tensile properties of thermoplastic starch and its blends with poly(lactic acid). Carbohydr. Polym. 83, 22–31 (2011).

DOI: 10.1016/j.carbpol.2010.07.020

Google Scholar

[34] Raquez, J. M. at all. Maleated thermoplastic starch by reactive extrusion. Carbohydr. Polym. 74, 159–169 (2008).

Google Scholar

[35] Carrasco, F., Pagès, P., Gámez-Pérez, J., Santana, O. O. & Maspoch, M. L. Processing of poly(lactic acid): Characterization of chemical structure, thermal stability and mechanical properties. Polym. Degrad. Stab. 95, 116–125 (2010).

DOI: 10.1016/j.polymdegradstab.2009.11.045

Google Scholar

[36] Ma, X., Yu, J. & Wang, N. Production of thermoplastic starch/ MMT-sorbitol nanocomposites by dual-melt extrusion processing. Macromol. Mater. Eng. 292, 723–728 (2007).

DOI: 10.1002/mame.200700026

Google Scholar

[37] Da Róz, A. L., Carvalho, A. J. F., Gandini, A. & Curvelo, A. A. S. The effect of plasticizers on thermoplastic starch compositions obtained by melt processing. Carbohydr. Polym. 63, 417–424 (2006).

DOI: 10.1016/j.carbpol.2005.09.017

Google Scholar