[1]
Chandra, R. & Rustgi, R. Biodegradable Polymers. Prog. Polym. Sci. 23, 1273–1335 (1998).
Google Scholar
[2]
Vroman, I. & Tighzert, L. Biodegradable polymers. Materials (Basel). 2, 307–344 (2009).
Google Scholar
[3]
Gotlib, E. M., Vdovina, T. V. & Yamaleeva, E. S. Increasing the biodegradability of epoxy materials by means of vegetable oils and their oxygenated derivatives. Proc. Univ. Appl. Chem. Biotechnol. 4, 700–707 (2020).
DOI: 10.21285/2227-2925-2020-10-4-700-707
Google Scholar
[4]
Gotlib, E. at all. Agricultural by-products as advanced raw materials for obtaining modifiers and fillers for epoxy materials. Key Eng. Mater. 822, 343–349 (2019).
DOI: 10.4028/www.scientific.net/kem.822.343
Google Scholar
[5]
Gupta, B., Revagade, N. & Hilborn, J. Poly(lactic acid) fiber: An overview. Prog. Polym. Sci. 32, 455–482 (2007).
DOI: 10.1016/j.progpolymsci.2007.01.005
Google Scholar
[6]
Galimzyanova, R. Y., Mevliyanova, M. D. & Hisamieva, D. R. The Use of Polylactic Acid to Obtain Biodegradable Medical Devices. 816, 285–289 (2019).
DOI: 10.4028/www.scientific.net/kem.816.285
Google Scholar
[7]
Posvyashchennaya, A., Volgina, T., Novikov, V. & Zinovyev, A. Lactide production from polymer waste. Key Eng. Mater. 769 KEM, 17–22 (2018).
DOI: 10.4028/www.scientific.net/kem.769.17
Google Scholar
[8]
George, G., Joseph, K., Boudenne, A. & Thomas, S. Recent advances in green composites. Key Eng. Mater. 425, 107–166 (2010).
Google Scholar
[9]
Hamad, K., Kaseem, M., Ayyoob, M., Joo, J. & Deri, F. Polylactic acid blends: The future of green, light and tough. Prog. Polym. Sci. 85, 83–127 (2018).
DOI: 10.1016/j.progpolymsci.2018.07.001
Google Scholar
[10]
Volfson, S. I., Zakirova, L. Y., Karaseva, Y. S. & Nigmatullin, A. I. Effect of the technological additives on the properties of recycled polyolefins. Key Eng. Mater. 816 KEM, 90–95 (2019).
DOI: 10.4028/www.scientific.net/kem.816.90
Google Scholar
[11]
Lasprilla, A. J. R., Martinez, G. A. R., Lunelli, B. H., Jardini, A. L. & Filho, R. M. Poly-lactic acid synthesis for application in biomedical devices - A review. Biotechnol. Adv. 30, 321–328 (2012).
DOI: 10.1016/j.biotechadv.2011.06.019
Google Scholar
[12]
Avérous, L. Polylactic acid: Synthesis, properties and applications. Monomers, Polym. Compos. from Renew. Resour. 433–450 (2008).
DOI: 10.1016/b978-0-08-045316-3.00021-1
Google Scholar
[13]
Lisanevich, M. S. at all. Effect of processing conditions on the structure and properties of polypropylene spunbond fabrics. Key Eng. Mater. 822, 355–361 (2019).
Google Scholar
[14]
Galimzyanova, R. Y., Lisanevich, M. S., Rakhmatullina, E. R. & Khakimullin, Y. N. Medical nonwovens: Effects of radiation sterilization on bursting strength. Key Eng. Mater. 869 KEM, 101–106 (2020).
DOI: 10.4028/www.scientific.net/kem.869.101
Google Scholar
[15]
Rakhmatullina, E. R., Lisanevich, M. S., Galimzyanova, R. Y. & Khakimullin, Y. N. The effect of radiation sterilization on the stress-strain properties of non-woven materials-based on polypropylene. Mater. Sci. Forum 992 MSF, 403–408 (2020).
DOI: 10.4028/www.scientific.net/msf.992.403
Google Scholar
[16]
Lunt, J. & Shafer, A. L. Polylactic acid polymers from corn. Applications in the Textile industry. J. Ind. Text. 29, 191–205 (2000).
DOI: 10.1106/lvy7-vbvf-v8lr-l5at
Google Scholar
[17]
Phattarateera, S., Junsook, N., Kumsang, P., Aontee, A. & Kerddonfag, N. The ternary blends of tps/pbat/pla films: A study on the morphological and mechanical properties. Key Eng. Mater. 861 KEM, 170–175 (2020).
DOI: 10.4028/www.scientific.net/kem.861.170
Google Scholar
[18]
Ferrarezi, M. M. F., de Oliveira Taipina, M., da Silva, L. C. E. & Gonçalves, M. do C. Poly(Ethylene Glycol) as a Compatibilizer for Poly(Lactic Acid)/Thermoplastic Starch Blends. J. Polym. Environ. 21, 151–159 (2013).
DOI: 10.1007/s10924-012-0480-z
Google Scholar
[19]
Xiong, Z. at all. Effect of castor oil enrichment layer produced by reaction on the properties of PLA/HDI-g-starch blends. Carbohydr. Polym. 94, 235–243 (2013).
DOI: 10.1016/j.carbpol.2013.01.038
Google Scholar
[20]
Ferri, J. M., Garcia-Garcia, D., Sánchez-Nacher, L., Fenollar, O. & Balart, R. The effect of maleinized linseed oil (MLO) on mechanical performance of poly(lactic acid)-thermoplastic starch (PLA-TPS) blends. Carbohydr. Polym. 147, 60–68 (2016).
DOI: 10.1016/j.carbpol.2016.03.082
Google Scholar
[21]
Oksman, K., Skrifvars, M. & Selin, J. F. Natural fibres as reinforcement in polylactic acid (PLA) composites. Compos. Sci. Technol. 63, 1317–1324 (2003).
DOI: 10.1016/s0266-3538(03)00103-9
Google Scholar
[22]
Dangtungee, R., Srisuk, R. & Siengchin, S. Rice bran/poly(lactic acid) composites in packaging product. Adv. Mater. Res. 931–932, 57–62 (2014).
DOI: 10.4028/www.scientific.net/amr.931-932.57
Google Scholar
[23]
Jalalvandi, E., Ghanbari, T., Cherghibidsorkhi, H., Zeimaran, E. & Ilbeygi, H. Processing, thermal behavior and tensile properties of pla/thermoplastic starch/montmorillonite nanocomposites. Adv. Mater. Res. 684, 75–79 (2013).
DOI: 10.4028/www.scientific.net/amr.684.75
Google Scholar
[24]
Chabrat, E., Abdillahi, H., Rouilly, A. & Rigal, L. Influence of citric acid and water on thermoplastic wheat flour/poly(lactic acid) blends. I: Thermal, mechanical and morphological properties. Ind. Crops Prod. 37, 238–246 (2012).
DOI: 10.1016/j.indcrop.2011.11.034
Google Scholar
[25]
Rasal, R. M., Janorkar, A. V. & Hirt, D. E. Poly(lactic acid) modifications. Prog. Polym. Sci. 35, 338–356 (2010).
DOI: 10.1016/j.progpolymsci.2009.12.003
Google Scholar
[26]
Noivoil, N. & Yoksan, R. Oligo(lactic acid)-grafted starch: A compatibilizer for poly(lactic acid)/thermoplastic starch blend. Int. J. Biol. Macromol. 160, 506–517 (2020).
DOI: 10.1016/j.ijbiomac.2020.05.178
Google Scholar
[27]
Yang, X., Finne-Wistrand, A. & Hakkarainen, M. Improved dispersion of grafted starch granules leads to lower water resistance for starch-g-PLA/PLA composites. Compos. Sci. Technol. 86, 149–156 (2013).
DOI: 10.1016/j.compscitech.2013.07.013
Google Scholar
[28]
Il'icheva, E. S., Khusainov, A. D., E.N., C. & E.M., G. High-molecular-weight modifiers with graft anhydride and imide groups: effect on the adhesion, rheological, and physicomechanical properties of rubber compounds. Int. Polym. Sci. Technol. 42, 117–120 (2015).
DOI: 10.1177/0307174x1504200604
Google Scholar
[29]
Vindizheva, A., Khashirova, S. & Kalabin, A. Biologically destroyable polymer compositions with the use of natural filler. Key Eng. Mater. 869 KEM, 501–507 (2020).
DOI: 10.4028/www.scientific.net/kem.869.501
Google Scholar
[30]
De Macedo, J. R. N. & Dos Santos Rosa, D. Effect of fiber and starch incorporation in biodegradation of PLA-TPS Cotton composites. Key Eng. Mater. 668, 54–62 (2016).
DOI: 10.4028/www.scientific.net/kem.668.54
Google Scholar
[31]
Teixeira, E. de M. at all. Properties of thermoplastic starch from cassava bagasse and cassava starch and their blends with poly (lactic acid). Ind. Crops Prod. 37, 61–68 (2012).
DOI: 10.1016/j.indcrop.2011.11.036
Google Scholar
[32]
Bocz, K. at all. Flax fibre reinforced PLA/TPS biocomposites flame retarded with multifunctional additive system. Polym. Degrad. Stab. 106, 63–73 (2014).
DOI: 10.1016/j.polymdegradstab.2013.10.025
Google Scholar
[33]
Yokesahachart, C. & Yoksan, R. Effect of amphiphilic molecules on characteristics and tensile properties of thermoplastic starch and its blends with poly(lactic acid). Carbohydr. Polym. 83, 22–31 (2011).
DOI: 10.1016/j.carbpol.2010.07.020
Google Scholar
[34]
Raquez, J. M. at all. Maleated thermoplastic starch by reactive extrusion. Carbohydr. Polym. 74, 159–169 (2008).
Google Scholar
[35]
Carrasco, F., Pagès, P., Gámez-Pérez, J., Santana, O. O. & Maspoch, M. L. Processing of poly(lactic acid): Characterization of chemical structure, thermal stability and mechanical properties. Polym. Degrad. Stab. 95, 116–125 (2010).
DOI: 10.1016/j.polymdegradstab.2009.11.045
Google Scholar
[36]
Ma, X., Yu, J. & Wang, N. Production of thermoplastic starch/ MMT-sorbitol nanocomposites by dual-melt extrusion processing. Macromol. Mater. Eng. 292, 723–728 (2007).
DOI: 10.1002/mame.200700026
Google Scholar
[37]
Da Róz, A. L., Carvalho, A. J. F., Gandini, A. & Curvelo, A. A. S. The effect of plasticizers on thermoplastic starch compositions obtained by melt processing. Carbohydr. Polym. 63, 417–424 (2006).
DOI: 10.1016/j.carbpol.2005.09.017
Google Scholar