Influence of Nonequilibrium Low-Temperature Plasma on the Properties of Nonwoven Fabric Based on Polypropylene

Article Preview

Abstract:

Investigation of the effect of low-pressure NLTP in nitrogen, argon, propane-butane and air on the properties of a multilayer medical-purpose material based on polypropylene used for the manufacture of sanitary-hygienic and medical products. It is shown that after plasma treatment of argon, nitrogen, propane-butane, the surface polarity of the CMC material changes significantly, as evidenced by a decrease in the wettability angle and an increase in capillarity. The most significant changes in indicators are observed in the case of plasma treatment in argon and nitrogen. However, in the case of argon, less processing time is required to achieve the effect. Plasma treatment leads to a slight decrease in tensile strength, no more than 10-15%. It is also shown that when plasma is treated in an argon atmosphere, such characteristics of a nonwoven material as air permeability, hygroscopicity increase, and a decrease in rigidity is observed. The study of the structure of the material (pore size) showed that the treatment with NLTP leads to a significant decrease in the size of large pores and an increase in the size of medium and small pores

You might also be interested in these eBooks

Info:

Periodical:

Pages:

179-184

Citation:

Online since:

September 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Wilson, A. The formation of dry, wet, spunlaid and other types of nonwovens. Appl. Nonwovens Tech. Text. 3–17 (2010).

DOI: 10.1533/9781845699741.1.3

Google Scholar

[2] Ding, Z. et al. Spunbonded needle-punched nonwoven geotextiles for filtration and drainage applications: Manufacturing and structural design. Compos. Commun. 100481 (2020).

DOI: 10.1016/j.coco.2020.100481

Google Scholar

[3] Lima, M., Vasconcelos, R. M., Abreu, M. J. & Silva, M. E. C. Comparative study of friction coefficient in nonwovens applied for non active medical devices. Tekst. ve Konfeksiyon 18, 258–262 (2008).

Google Scholar

[4] Das, D. Introduction to composite nonwovens. Composite Non-Woven Materials: Structure, Properties and Applications (Woodhead Publishing Limited, 2014).

Google Scholar

[5] Andreassen, E., Myhre, O. J., Hinrichsen, E. L., Braathen, M. D. & Grøstad, K. Relationships between the properties of fibers and thermally bonded nonwoven fabrics made of polypropylene. J. Appl. Polym. Sci. 58, 1633–1645 (1995).

DOI: 10.1002/app.1995.070580926

Google Scholar

[6] Stolyarov, O. & Ershov, S. Characterization of change in polypropylene spunbond nonwoven fabric fiber orientation during deformation based on image analysis and Fourier transforms. J. Strain Anal. Eng. Des. 52, 457–466 (2017).

DOI: 10.1177/0309324717727235

Google Scholar

[7] Hosun, L. A review of spun bond process. J. Text. Apparel, Technol. Manag. 6, 1–13 (2010).

Google Scholar

[8] Cusick, G. E., Hearle, J. W. S., Michie, R. I. C., Peters, R. H. & Stevenson, P. J. Physical properties of some commercial non-woven fabrics. J. Text. Inst. Proc. 54, P52–P74 (1963).

DOI: 10.1080/19447016308687752

Google Scholar

[9] Ajmeri, J. R. & Ajmeri, C. J. Nonwoven personal hygiene materials and products. Appl. Nonwovens Tech. Text. 85–102 (2010).

DOI: 10.1533/9781845699741.2.85

Google Scholar

[10] Ajmeri, J. R. & Ajmeri, C. J. Developments in nonwoven materials for medical applications. Advances in Technical Nonwovens (Elsevier Ltd, 2016).

DOI: 10.1016/b978-0-08-100575-0.00008-5

Google Scholar

[11] Ajmeri, J. R. & Ajmeri, C. J. Nonwoven materials and technologies for medical applications. Handbook of Medical Textiles (Woodhead Publishing Limited, 2011).

DOI: 10.1533/9780857093691.1.106

Google Scholar

[12] Chau, K. H., Lo, C. K. Y. & Kan, C. W. A Literature Review of Manufacturing Eco-Friendly Comfort Textiles and Future Agenda. Appl. Mech. Mater. 866, 444–447 (2017).

DOI: 10.4028/www.scientific.net/amm.866.444

Google Scholar

[13] Midha, V. K. & Dakuri, A. Spun bonding Technology and Fabric Properties: a Review. J. Text. Eng. Fash. Technol. 1, 1–9 (2017).

Google Scholar

[14] Grafe, T., Graham, K. & Co, D. «Nanofibers and nanofiber web»: A new class of nonwovens. Synth. Fibres 34, 12–18 (2005).

Google Scholar

[15] Rakhmatullina, E. R., Lisanevich, M. S., Galimzyanova, R. Y. & Khakimullin, Y. N. The effect of radiation sterilization on the stress-strain properties of non-woven materials-based on polypropylene. Mater. Sci. Forum 992 MSF, 403–408 (2020).

DOI: 10.4028/www.scientific.net/msf.992.403

Google Scholar

[16] Galimzyanova, R. Y., Lisanevich, M. S., Rakhmatullina, E. R. & Khakimullin, Y. N. Medical nonwovens: Effects of radiation sterilization on bursting strength. Key Eng. Mater. 869 KEM, 101–106 (2020).

DOI: 10.4028/www.scientific.net/kem.869.101

Google Scholar

[17] Lisanevich, M.S. et al. Effect of processing conditions on the structure and properties of polypropylene spunbond fabrics. Key Eng. Mater. 822, 355–361 (2019).

Google Scholar

[18] Rakhmatullina, E. R., Galimzyanova, R. Y., Lisanevich, M. S., Khakimullin, Y. N. & Konovalova, O. A. Investigation of the Effect of Electron Radiation on the Structure of Polypropylene Using Optical and Atomic Force Spectroscopy Methods. 816, 290–294 (2019).

DOI: 10.4028/www.scientific.net/kem.816.290

Google Scholar

[19] Zhao, B. Studying on the fiber diameter of polypropylene (PP) spunbonding fabric by means of artificial neural network model and physical model. Key Eng. Mater. 426–427, 356–360 (2010).

DOI: 10.4028/www.scientific.net/kem.426-427.356

Google Scholar

[20] Bhat, G. S., Jangala, P. K. & Spruiell, J. E. Thermal bonding of polypropylene nonwovens: Effect of bonding variables on the structure and properties of the fabrics. J. Appl. Polym. Sci. 92, 3593–3600 (2004).

DOI: 10.1002/app.20411

Google Scholar

[21] Nanjundappa, R. & Bhat, G. S. Effect of processing conditions on the structure and properties of polypropylene spunbond fabrics. J. Appl. Polym. Sci. 98, 2355–2364 (2005).

DOI: 10.1002/app.22148

Google Scholar

[22] Pamuk, O., Abreu, M. J. & Öndogan, Z. An investigation on the comfort properties for different disposable surgical gowns by using thermal manikin. Tekst. ve Konfeksiyon 18, 236–239 (2008).

Google Scholar

[23] Pamuk, O., Ondočjan, Z. & Abreu, M. J. The thermal comfort properties of reusable and disposable surgical gown fabrics. Tekstilec 52, 24–30 (2009).

Google Scholar

[24] Zakirova, L. Y., Vol'Fson, S. I. & Khakimullin, Y. N. Determination of the surface free energy of thermoelastoplastic-modified bitumen. Polym. Sci. - Ser. C 49, 149–151 (2007).

DOI: 10.1134/s1811238207020105

Google Scholar

[25] Xu, Z. Bin, Li, Y. N. & Chen, X. L. Study of the effects of treatment conditions on the hydrophility of modified polyphenylene sulfide nonwoven induced by low temperature plasma. Adv. Mater. Res. 1033–1034, 1220–1226 (2014).

DOI: 10.4028/www.scientific.net/amr.1033-1034.1220

Google Scholar

[26] Jelil, R. A. A review of low-temperature plasma treatment of textile materials. Journal of Materials Science 50, (Springer US, 2015).

Google Scholar

[27] Majchrzycka, K., Okrasa, M., Brochocka, A. & Urbaniak-Domagala, W. Influence of low-temperature plasma treatment on the liquid filtration efficiency of melt-blown pp nonwovens in the conditions of simulated use of respiratory protective equipment. Chem. Process Eng. - Inz. Chem. i Proces. 38, 195–207 (2017).

DOI: 10.1515/cpe-2017-0015

Google Scholar

[28] Tuominen, M., Kuusipalo, J. & Harlin, A. Fast and Efficient Surface Treatment for Nonwoven Materials By. 10, 8–13 (2010).

Google Scholar

[29] Černák, M. et al. Generation of a high-density highly non-equilibrium air plasma for high-speed large-area flat surface processing. Plasma Phys. Control. Fusion 53, (2011).

DOI: 10.1088/0741-3335/53/12/124031

Google Scholar

[30] Sardella, E., Palumbo, F., Camporeale, G. & Favia, P. Non-equilibrium plasma processing for the preparation of antibacterial surfaces. Materials (Basel). 9, 1–24 (2016).

DOI: 10.3390/ma9070515

Google Scholar

[31] Shahidi, S., Ghoranneviss, M. & Moazzenchi, B. New advances in plasma technology for textile. J. Fusion Energy 33, 97–102 (2014).

DOI: 10.1007/s10894-013-9657-2

Google Scholar

[32] Zhicheng, G., Yanpeng, H., Liming, W. & Zhidong, J. Atmospheric Pressure Glow Discharge in Air and its Application to Surface Modification of PP Nonwovens. Annu. Rep. Conf. Electr. Insul. Dielectr. Phenom. 116–119 (2005).

DOI: 10.1109/ceidp.2005.1560634

Google Scholar

[33] Zhang, Y., Zhao, B. & Tong, J. L. Surface wettability of polypropylene non-woven using atmospheric pressure N2 dielectric barrier discharge plasma. Key Eng. Mater. 455, 472–475 (2011).

DOI: 10.4028/www.scientific.net/kem.455.472

Google Scholar

[34] Alves, L. L., Bogaerts, A., Guerra, V. & Turner, M. M. Foundations of modelling of nonequilibrium low-temperature plasmas. Plasma Sources Sci. Technol. 27, (2018).

DOI: 10.1088/1361-6595/aaa86d

Google Scholar

[35] Wei, P. et al. Preparation of PP non-woven fabric with good heavy metal adsorption performance via plasma modification and graft polymerization. Appl. Surf. Sci. 539, 148195 (2021).

DOI: 10.1016/j.apsusc.2020.148195

Google Scholar

[36] Hwang, Y. J., Mccord, M. G., an, J. S., Kang, B. C. & Park, S. W. Effects of Helium Atmospheric Pressure Plasma Treatment on Low-Stress Mechanical Properties of Polypropylene Nonwoven Fabrics. Text. Res. J. 75, 771–778 (2005).

DOI: 10.1177/0040517505053805

Google Scholar

[37] Virk, R. K., Ramaswamy, G. N., Bourham, M. & Bures, B. L. Plasma and Antimicrobial Treatment of Nonwoven Fabrics for Surgical Gowns. Text. Res. J. 74, 1073–1079 (2004).

DOI: 10.1177/004051750407401208

Google Scholar

[38] Masaeli, E., Morshed, M. & Tavanai, H. Study of the wettability properties of polypropylene nonwoven mats by low-pressure oxygen plasma treatment. Surf. Interface Anal. 38, 1380–1385 (2006).

DOI: 10.1002/sia.2587

Google Scholar