[1]
Wilson, A. The formation of dry, wet, spunlaid and other types of nonwovens. Appl. Nonwovens Tech. Text. 3–17 (2010).
DOI: 10.1533/9781845699741.1.3
Google Scholar
[2]
Ding, Z. et al. Spunbonded needle-punched nonwoven geotextiles for filtration and drainage applications: Manufacturing and structural design. Compos. Commun. 100481 (2020).
DOI: 10.1016/j.coco.2020.100481
Google Scholar
[3]
Lima, M., Vasconcelos, R. M., Abreu, M. J. & Silva, M. E. C. Comparative study of friction coefficient in nonwovens applied for non active medical devices. Tekst. ve Konfeksiyon 18, 258–262 (2008).
Google Scholar
[4]
Das, D. Introduction to composite nonwovens. Composite Non-Woven Materials: Structure, Properties and Applications (Woodhead Publishing Limited, 2014).
Google Scholar
[5]
Andreassen, E., Myhre, O. J., Hinrichsen, E. L., Braathen, M. D. & Grøstad, K. Relationships between the properties of fibers and thermally bonded nonwoven fabrics made of polypropylene. J. Appl. Polym. Sci. 58, 1633–1645 (1995).
DOI: 10.1002/app.1995.070580926
Google Scholar
[6]
Stolyarov, O. & Ershov, S. Characterization of change in polypropylene spunbond nonwoven fabric fiber orientation during deformation based on image analysis and Fourier transforms. J. Strain Anal. Eng. Des. 52, 457–466 (2017).
DOI: 10.1177/0309324717727235
Google Scholar
[7]
Hosun, L. A review of spun bond process. J. Text. Apparel, Technol. Manag. 6, 1–13 (2010).
Google Scholar
[8]
Cusick, G. E., Hearle, J. W. S., Michie, R. I. C., Peters, R. H. & Stevenson, P. J. Physical properties of some commercial non-woven fabrics. J. Text. Inst. Proc. 54, P52–P74 (1963).
DOI: 10.1080/19447016308687752
Google Scholar
[9]
Ajmeri, J. R. & Ajmeri, C. J. Nonwoven personal hygiene materials and products. Appl. Nonwovens Tech. Text. 85–102 (2010).
DOI: 10.1533/9781845699741.2.85
Google Scholar
[10]
Ajmeri, J. R. & Ajmeri, C. J. Developments in nonwoven materials for medical applications. Advances in Technical Nonwovens (Elsevier Ltd, 2016).
DOI: 10.1016/b978-0-08-100575-0.00008-5
Google Scholar
[11]
Ajmeri, J. R. & Ajmeri, C. J. Nonwoven materials and technologies for medical applications. Handbook of Medical Textiles (Woodhead Publishing Limited, 2011).
DOI: 10.1533/9780857093691.1.106
Google Scholar
[12]
Chau, K. H., Lo, C. K. Y. & Kan, C. W. A Literature Review of Manufacturing Eco-Friendly Comfort Textiles and Future Agenda. Appl. Mech. Mater. 866, 444–447 (2017).
DOI: 10.4028/www.scientific.net/amm.866.444
Google Scholar
[13]
Midha, V. K. & Dakuri, A. Spun bonding Technology and Fabric Properties: a Review. J. Text. Eng. Fash. Technol. 1, 1–9 (2017).
Google Scholar
[14]
Grafe, T., Graham, K. & Co, D. «Nanofibers and nanofiber web»: A new class of nonwovens. Synth. Fibres 34, 12–18 (2005).
Google Scholar
[15]
Rakhmatullina, E. R., Lisanevich, M. S., Galimzyanova, R. Y. & Khakimullin, Y. N. The effect of radiation sterilization on the stress-strain properties of non-woven materials-based on polypropylene. Mater. Sci. Forum 992 MSF, 403–408 (2020).
DOI: 10.4028/www.scientific.net/msf.992.403
Google Scholar
[16]
Galimzyanova, R. Y., Lisanevich, M. S., Rakhmatullina, E. R. & Khakimullin, Y. N. Medical nonwovens: Effects of radiation sterilization on bursting strength. Key Eng. Mater. 869 KEM, 101–106 (2020).
DOI: 10.4028/www.scientific.net/kem.869.101
Google Scholar
[17]
Lisanevich, M.S. et al. Effect of processing conditions on the structure and properties of polypropylene spunbond fabrics. Key Eng. Mater. 822, 355–361 (2019).
Google Scholar
[18]
Rakhmatullina, E. R., Galimzyanova, R. Y., Lisanevich, M. S., Khakimullin, Y. N. & Konovalova, O. A. Investigation of the Effect of Electron Radiation on the Structure of Polypropylene Using Optical and Atomic Force Spectroscopy Methods. 816, 290–294 (2019).
DOI: 10.4028/www.scientific.net/kem.816.290
Google Scholar
[19]
Zhao, B. Studying on the fiber diameter of polypropylene (PP) spunbonding fabric by means of artificial neural network model and physical model. Key Eng. Mater. 426–427, 356–360 (2010).
DOI: 10.4028/www.scientific.net/kem.426-427.356
Google Scholar
[20]
Bhat, G. S., Jangala, P. K. & Spruiell, J. E. Thermal bonding of polypropylene nonwovens: Effect of bonding variables on the structure and properties of the fabrics. J. Appl. Polym. Sci. 92, 3593–3600 (2004).
DOI: 10.1002/app.20411
Google Scholar
[21]
Nanjundappa, R. & Bhat, G. S. Effect of processing conditions on the structure and properties of polypropylene spunbond fabrics. J. Appl. Polym. Sci. 98, 2355–2364 (2005).
DOI: 10.1002/app.22148
Google Scholar
[22]
Pamuk, O., Abreu, M. J. & Öndogan, Z. An investigation on the comfort properties for different disposable surgical gowns by using thermal manikin. Tekst. ve Konfeksiyon 18, 236–239 (2008).
Google Scholar
[23]
Pamuk, O., Ondočjan, Z. & Abreu, M. J. The thermal comfort properties of reusable and disposable surgical gown fabrics. Tekstilec 52, 24–30 (2009).
Google Scholar
[24]
Zakirova, L. Y., Vol'Fson, S. I. & Khakimullin, Y. N. Determination of the surface free energy of thermoelastoplastic-modified bitumen. Polym. Sci. - Ser. C 49, 149–151 (2007).
DOI: 10.1134/s1811238207020105
Google Scholar
[25]
Xu, Z. Bin, Li, Y. N. & Chen, X. L. Study of the effects of treatment conditions on the hydrophility of modified polyphenylene sulfide nonwoven induced by low temperature plasma. Adv. Mater. Res. 1033–1034, 1220–1226 (2014).
DOI: 10.4028/www.scientific.net/amr.1033-1034.1220
Google Scholar
[26]
Jelil, R. A. A review of low-temperature plasma treatment of textile materials. Journal of Materials Science 50, (Springer US, 2015).
Google Scholar
[27]
Majchrzycka, K., Okrasa, M., Brochocka, A. & Urbaniak-Domagala, W. Influence of low-temperature plasma treatment on the liquid filtration efficiency of melt-blown pp nonwovens in the conditions of simulated use of respiratory protective equipment. Chem. Process Eng. - Inz. Chem. i Proces. 38, 195–207 (2017).
DOI: 10.1515/cpe-2017-0015
Google Scholar
[28]
Tuominen, M., Kuusipalo, J. & Harlin, A. Fast and Efficient Surface Treatment for Nonwoven Materials By. 10, 8–13 (2010).
Google Scholar
[29]
Černák, M. et al. Generation of a high-density highly non-equilibrium air plasma for high-speed large-area flat surface processing. Plasma Phys. Control. Fusion 53, (2011).
DOI: 10.1088/0741-3335/53/12/124031
Google Scholar
[30]
Sardella, E., Palumbo, F., Camporeale, G. & Favia, P. Non-equilibrium plasma processing for the preparation of antibacterial surfaces. Materials (Basel). 9, 1–24 (2016).
DOI: 10.3390/ma9070515
Google Scholar
[31]
Shahidi, S., Ghoranneviss, M. & Moazzenchi, B. New advances in plasma technology for textile. J. Fusion Energy 33, 97–102 (2014).
DOI: 10.1007/s10894-013-9657-2
Google Scholar
[32]
Zhicheng, G., Yanpeng, H., Liming, W. & Zhidong, J. Atmospheric Pressure Glow Discharge in Air and its Application to Surface Modification of PP Nonwovens. Annu. Rep. Conf. Electr. Insul. Dielectr. Phenom. 116–119 (2005).
DOI: 10.1109/ceidp.2005.1560634
Google Scholar
[33]
Zhang, Y., Zhao, B. & Tong, J. L. Surface wettability of polypropylene non-woven using atmospheric pressure N2 dielectric barrier discharge plasma. Key Eng. Mater. 455, 472–475 (2011).
DOI: 10.4028/www.scientific.net/kem.455.472
Google Scholar
[34]
Alves, L. L., Bogaerts, A., Guerra, V. & Turner, M. M. Foundations of modelling of nonequilibrium low-temperature plasmas. Plasma Sources Sci. Technol. 27, (2018).
DOI: 10.1088/1361-6595/aaa86d
Google Scholar
[35]
Wei, P. et al. Preparation of PP non-woven fabric with good heavy metal adsorption performance via plasma modification and graft polymerization. Appl. Surf. Sci. 539, 148195 (2021).
DOI: 10.1016/j.apsusc.2020.148195
Google Scholar
[36]
Hwang, Y. J., Mccord, M. G., an, J. S., Kang, B. C. & Park, S. W. Effects of Helium Atmospheric Pressure Plasma Treatment on Low-Stress Mechanical Properties of Polypropylene Nonwoven Fabrics. Text. Res. J. 75, 771–778 (2005).
DOI: 10.1177/0040517505053805
Google Scholar
[37]
Virk, R. K., Ramaswamy, G. N., Bourham, M. & Bures, B. L. Plasma and Antimicrobial Treatment of Nonwoven Fabrics for Surgical Gowns. Text. Res. J. 74, 1073–1079 (2004).
DOI: 10.1177/004051750407401208
Google Scholar
[38]
Masaeli, E., Morshed, M. & Tavanai, H. Study of the wettability properties of polypropylene nonwoven mats by low-pressure oxygen plasma treatment. Surf. Interface Anal. 38, 1380–1385 (2006).
DOI: 10.1002/sia.2587
Google Scholar