Influence of Gamma and Electron Radiation on the Strength Characteristics of Nonwoven SMS Materials Based on Polypropylene

Article Preview

Abstract:

Radiation sterilization is widely used to sterilize nonwoven SMS medical products. SMS materials have improved filtering and barrier properties, low bacteriopermeability and, due to these properties, are indispensable for medicine. They are used to make such important health care products as disposable surgical clothing and underwear. As a result of the research carried out, the effect of gamma and electron radiation, in the range of absorbed doses from 15 to 25 kGy, on the strength characteristics of nonwoven SMS materials based on polypropylene with a surface density of 35, 40, 50 g/cm2 was studied. It has been established that the strength characteristics (tensile strength, tensile strength, and tear strength) of nonwoven materials decrease after exposure to ionizing radiation. The higher the density of the material, the more its characteristics decrease after radiation sterilization. It was also found that gamma radiation, due to its nature, has a stronger effect on nonwoven materials based on polypropylene, and leads to a stronger decrease in strength characteristics. In general, for products sterilized by ionizing radiation and made from SMS materials, it is important to control the strength characteristics, primarily, the tensile strength in the transverse direction of the web stuff.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

172-178

Citation:

Online since:

September 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Iaea. Trends in Sterilization of Health Care. October (2008).

Google Scholar

[2] Parsons, B.J. Sterilisation of healthcare products by ionising radiation: principles and standards. Sterilisation of Biomaterials and Medical Devices (Elsevier Masson SAS., 2012).

DOI: 10.1533/9780857096265.56

Google Scholar

[3] Jiang, J.X. at all. Effects of γ-Ray irradiation on the properties of nano-hydroxyapatite/ polyurethane composite porous scaffolds. Mater. Sci. Forum 852, 422–427 (2016).

DOI: 10.4028/www.scientific.net/msf.852.422

Google Scholar

[4] Kang, N. H. и др. Properties of Sterilized Human Skin Allografts by Gamma-Irradiation. Key Eng. Mater. 342–343, 365–368 (2007).

Google Scholar

[5] Puhova, I.V., Rubtsov, K.V., Kurzina, I.A., Kazakov, A.V. & Medovnik, A.V. Modification of polymer materials by electron beam treatment. Key Eng. Mater. 670, 118–125 (2015).

DOI: 10.4028/www.scientific.net/kem.670.118

Google Scholar

[6] Kurbangaleev, Y. at all. Influence of radiation various doses on food products and feeds. Key Eng. Mater. 781 KEM, 190–194 (2018).

DOI: 10.4028/www.scientific.net/kem.781.190

Google Scholar

[7] Abreu, M. J., Silva, M. E. C., Schacher, L. & Adolphe, D. Microscopical examination: The impact of different ionising radiation doses over protective clothing used in the operating theatre. Mater. Sci. Forum 455–456, 792–796 (2004).

DOI: 10.4028/www.scientific.net/msf.455-456.792

Google Scholar

[8] Nanjundappa, R. & Bhat, G. S. Effect of processing conditions on the structure and properties of polypropylene spunbond fabrics. J. Appl. Polym. Sci. 98, 2355–2364 (2005).

DOI: 10.1002/app.22148

Google Scholar

[9] Soebianto, Y. S. at all.. Degradation of polypropylene under gamma irradiation: protection effect of additives. Polym. Degrad. Stab. 50, 203–210 (1995).

DOI: 10.1016/0141-3910(95)00153-0

Google Scholar

[10] Lisanevich, M. S. at all. Effect of processing conditions on the structure and properties of polypropylene spunbond fabrics. Key Eng. Mater. 822, 355–361 (2019).

Google Scholar

[11] Ferreira, L. M. at all. Thermal analysis evaluation of mechanical properties changes promoted by gamma radiation on surgical polymeric textiles. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 191, 675–679 (2002).

DOI: 10.1016/s0168-583x(02)00631-6

Google Scholar

[12] Miranda, L.F., Silveira, L. H., Andrade e Silva, L. G. & Munhoz Jr., A. H. Irradiation of a Polypropilene-Glass Fiber Composite. Adv. Sci. Technol. 71, 138–144 (2010).

DOI: 10.4028/www.scientific.net/ast.71.138

Google Scholar

[13] Shahriar Kabir, M. at all. Mechanical Properties of Gamma-Irradiated Natural Fiber Reinforced Composites. Nano Hybrids Compos. 23, 24–38 (2018).

DOI: 10.4028/www.scientific.net/nhc.23.24

Google Scholar

[14] Chen, J. и др. Effect of γ-radiation on the property of polypropylene/nylon-6 blends. Adv. Mater. Res. 320, 69–74 (2011).

Google Scholar

[15] Das, D. Introduction to composite nonwovens. Composite Non-Woven Materials: Structure, Properties and Applications (Woodhead Publishing Limited, 2014).

Google Scholar

[16] Hosun, L. A review of spun bond process. J. Text. Apparel, Technol. Manag. 6, 1–13 (2010).

Google Scholar

[17] Zhao, B. Studying on the fiber diameter of polypropylene (PP) spunbonding fabric by means of artificial neural network model and physical model. Key Eng. Mater. 426–427, 356–360 (2010).

DOI: 10.4028/www.scientific.net/kem.426-427.356

Google Scholar

[18] Bernava, A., Reihmane, S., Bitenieks, J. & Manins, M. The nonwovens properties made from hybrid fibres. Key Eng. Mater. 721 KEM, 53–57 (2017).

DOI: 10.4028/www.scientific.net/kem.721.53

Google Scholar

[19] Bhat, G. S., Jangala, P. K. & Spruiell, J. E. Thermal bonding of polypropylene nonwovens: Effect of bonding variables on the structure and properties of the fabrics. J. Appl. Polym. Sci. 92, 3593–3600 (2004).

DOI: 10.1002/app.20411

Google Scholar

[20] Ajmeri, J. R. & Ajmeri, C. J. Developments in nonwoven materials for medical applications. Advances in Technical Nonwovens (Elsevier Ltd, 2016).

DOI: 10.1016/b978-0-08-100575-0.00008-5

Google Scholar

[21] Ajmeri, J. R. & Ajmeri, C. J. Nonwoven materials and technologies for medical applications. Handbook of Medical Textiles (Woodhead Publishing Limited, 2011).

DOI: 10.1533/9780857093691.1.106

Google Scholar

[22] Ajmeri, J. R. & Ajmeri, C. J. Nonwoven personal hygiene materials and products. Appl. Nonwovens Tech. Text. 85–102 (2010).

DOI: 10.1533/9781845699741.2.85

Google Scholar

[23] Philippe, F., Abreu, M. J., Schacher, L., Adolphe, D. C. & S.M.E., C. Influence of the sterilisation process on the tactile feeling of surgical gowns. Int. J. Cloth. Sci. Technol. 15, 268–275 (2003).

DOI: 10.1108/09556220310478378

Google Scholar

[24] Abreu, M. J., Silva, M. E., Schacher, L. & Adolphe, D. Designing surgical clothing and drapes according to the new technical standards. Int. J. Cloth. Sci. Technol. 15, 69–74 (2003).

DOI: 10.1108/09556220310461178

Google Scholar

[25] Pamuk, O., Abreu, M. J. & Öndogan, Z. An investigation on the comfort properties for different disposable surgical gowns by using thermal manikin. Tekst. ve Konfeksiyon 18, 236–239 (2008).

Google Scholar

[26] Pamuk, O., Ondočjan, Z. & Abreu, M. J. The thermal comfort properties of reusable and disposable surgical gown fabrics. Tekstilec 52, 24–30 (2009).

Google Scholar

[27] Andreassen, E., Myhre, O. J., Hinrichsen, E.L., Braathen, M.D. & Grøstad, K. Relationships between the properties of fibers and thermally bonded nonwoven fabrics made of polypropylene. J. Appl. Polym. Sci. 58, 1633–1645 (1995).

DOI: 10.1002/app.1995.070580926

Google Scholar

[28] Rakhmatullina, E. R., Lisanevich, M. S., Galimzyanova, R. Y. & Khakimullin, Y. N. The effect of radiation sterilization on the stress-strain properties of non-woven materials-based on polypropylene. Mater. Sci. Forum 992 MSF, 403–408 (2020).

DOI: 10.4028/www.scientific.net/msf.992.403

Google Scholar

[29] Lisanevich, M.S., Rakhmatullina, E.R. & Khakimullin, Y.N. Galimzyanova R.Yu. The Effect of Polyquinone and Phenol-Phosphite Stabilizer on the Resistance of Polypropylene to Ionizing Radiation. 816, 328–332 (2019).

DOI: 10.4028/www.scientific.net/kem.816.328

Google Scholar

[30] Li, M., Xiao, L.G. & Zhao, H.K. Characterization of gamma irradiated isotactic polypropylene by mixtures of hindered amine/organo-phosphite stabilizers. Appl. Mech. Mater. 457–458, 297–300 (2014).

DOI: 10.4028/www.scientific.net/amm.457-458.297

Google Scholar

[31] Il'icheva, E. S., Khusainov, A. D., E.N., C. & E.M., G. High-molecular-weight modifiers with graft anhydride and imide groups: effect on the adhesion, rheological, and physicomechanical properties of rubber compounds. Int. Polym. Sci. Technol. 42, 117–120 (2015).

DOI: 10.1177/0307174x1504200604

Google Scholar

[32] Volfson, S.I., Zakirova, L.Y., Karaseva, Y.S. & Nigmatullin, A.I. Effect of the technological additives on the properties of recycled polyolefins. Key Eng. Mater. 816 KEM, 90–95 (2019).

DOI: 10.4028/www.scientific.net/kem.816.90

Google Scholar