[1]
K. Holmberg, P. Andersson, A. Erdemir Global Energy Consumption Due to Friction in Passenger Cars,, Tribol. Int., 47, 2012, 221-234.
DOI: 10.1016/j.triboint.2011.11.022
Google Scholar
[2]
K. Holmberg, P. Kivikyto-Reponen, P. Harkisaari, K. Valtonen, A. Erdemir Global Energy Consumption Due to Friction and Wear in The Mining Industry,, Tribol. Int., 115, 2017, 116-139.
DOI: 10.1016/j.triboint.2017.05.010
Google Scholar
[3]
P. L. Menezes, Kishore, S. V. Kailas, Study of Friction and Transfer Layer Formation in Copper-Steel Tribo-System: Role of Surface Texture and Roughness Parameters,, Tribol. Trans., 52, 2009, 611-622.
DOI: 10.1080/10402000902825754
Google Scholar
[4]
G. Breglozzi, S. I-U. Ahmed, A. D. Schino, J. M. Kenny, H. Haefke Friction and Wear Behavior of Austenitic Stainless Steel: Influence of Atmospheric Humidity, Load Range, And Grain Size,, Tribol. Lett., 17, 2004, 697-704.
DOI: 10.1007/s11249-004-8075-z
Google Scholar
[5]
A. Yong, Q. J. Wang, P. Chen, Simulating The Worn Surface in A Wear Process,, Wear, 252, 2002, 37-47.
DOI: 10.1016/s0043-1648(01)00841-9
Google Scholar
[6]
A. Clarke, I. J. J. Weeks, R. W. Snidle, H. P. Evans Running-in and Micropitting Behavior of Steel Surfaces Under Mixed Lubrication Conditions,, Tribol. Int., 10, 2016, 59-68.
DOI: 10.1016/j.triboint.2016.03.007
Google Scholar
[7]
S. Hutt, A. Clarke, H. P. Evans Generation of Acoustic Emission from Running-In and Subsequent Micropitting of Mixed-Elastohydrodynamic Contacts,, Tribol. Int., 119, 2018, 270-280.
DOI: 10.1016/j.triboint.2017.11.011
Google Scholar
[8]
S. Akbarzadeh, M. M. Khonsari On the Optimization of Running-in Operating Conditions in Applications Involving EHL Line Contact,, Wear, 2013, 130-137.
DOI: 10.1016/j.wear.2013.01.098
Google Scholar
[9]
W. P. Dong, K. J. Stout An Integrated Approach to The Characterization of Surface Wear I: Qualitative Characterization,, Wear, 181-183, 1995, 700-716.
DOI: 10.1016/0043-1648(95)90187-6
Google Scholar
[10]
M. Sedlacek, B. Podgornik, J. Vizintin Correlation Between Standard Roughness Parameters Skewness and Kurtosis and Tribological Behavior of Contact Surfaces,, Tribol. Int., 48, 2012, 102-112.
DOI: 10.1016/j.triboint.2011.11.008
Google Scholar
[11]
L. Deleanu, G. Andrei Surface Characterization of Polymer Composite Using Bearing Area Curve,, Proceedings of the ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis (ESDA) Istanbul, Turkey, 12-14 July (2010).
DOI: 10.1115/esda2010-25330
Google Scholar
[12]
Y. R. Jeng, Z. W. Lin, S. H. Shyu Changes of Surface Topography During Running-in Process,, ASME J. Tribol., 126(3), 2004, 620-625.
DOI: 10.1115/1.1759344
Google Scholar
[13]
K. J. Stout, T. G. King, D. J. Whitehouse Analytical Techniques in Surface Topography and Their Application to a Running-in Experiment,, Wear, 43, 1977, 99–115.
DOI: 10.1016/0043-1648(77)90046-1
Google Scholar
[14]
A. Ghosh, F. Sadeghi, A Novel Approach to Model Effects of Surface Roughness Parameters On Wear,, Wear, 338-339, 2015, 73-94.
DOI: 10.1016/j.wear.2015.04.022
Google Scholar
[15]
D. K. Prajapati, M. Tiwari, 3D Numerical Wear Model for Determining the Change in Surface Topography,, Surf. Topogr.: Metrol. Prop., 6, 2018, 045006.
DOI: 10.1088/2051-672x/aae81b
Google Scholar
[16]
X. Zuo, Y. Tan, Y. Zhou, H. Zhu, H. Fang Multifractal Analysis of Three-Dimensional Surface Topographies of GCr15 Steel and H70 Brass During Wear Process,, Measurement, 125, 2018, 196–218.
DOI: 10.1016/j.measurement.2018.04.082
Google Scholar
[17]
W. R. Chang, I. Etison, D. B. Bogy An Elastic–Plastic Model for The Contact of Rough Surfaces,, ASME J. Tribol., 109, 1987, 257–263.
DOI: 10.1115/1.3261348
Google Scholar