Tribological Properties and Corrosion Resistance Properties of NbN/TiN Multilayer, TiNb-NX Single-Layer and Coatings that are Doped with Carbon

Article Preview

Abstract:

NbN/TiN, TiNb-NX and CH-TiNb-N12 coatings are deposited by RF magnetron sputtering to determine the tribological properties and corrosion resistance. ‘x’ is the flux rate for nitrogen and ‘CH’ signifies the addition of acetylene. In terms of the corrosion resistance, all the coatings have a similar corrosion potential and NbN/TiN multilayer coatings exhibit the lowest corrosion current. The NbN/TiN multilayer has a low pitting potential so severe pitting corrosion is observed on the surface. CH-TiNb-N12 coating is most resistant to corrosion and exhibits no pitting before the test ends. In contact with counter-bodies with a Si3N4 ball or an AISI 52100 ball, a CH-TiNb-N12 coating acts as a solid lubricant so the wear mechanism shows the least abrasion. The CH-TiNb-N12 coating has the lowest wear rate and coefficient of friction for sliding against Si3N4 and AISI 52100 balls. The wear rate is respectively 3.2 and 6.8 times less than that for SKH51 substrate when sliding against Si3N4 and AISI 52100 balls. The results for this study show that a TiNb-N12-CH coating has the best tribological properties and corrosion resistance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

208-218

Citation:

Online since:

October 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Akaike, K. Yoshizawa, R. Oke, A. Fujimaki and H. Hayakawa: Appl. Supercond. Vol. 5 (1998), p.319.

Google Scholar

[2] E. V. Shalaeva, R. S. Baryshev, M. V. Kuznetsov and B. V. Mitrofanov: Thin Solid Films. Vol. 261 (1995), p.64.

DOI: 10.1016/s0040-6090(94)06508-x

Google Scholar

[3] J. Hao, F. Jiao, D. Xie and K. Zhao: Physica C Vol. 450 (2006), pp.101-104.

Google Scholar

[4] M. Radparvar: Cryogenics. Vol. 35 (1995), p.535.

Google Scholar

[5] K. Vasu, M. G. Krishna and K. A. Padmanabhan: Mater. Sci. Vol. 47 (2012), p.3522.

Google Scholar

[6] N.N. Iosad, B.D. Jackson, F. Ferro, J.R. Gao, S.N. Polyakov, P.N. Dmitriev and T.M. Klapwijk,: Sci. Technol. Vpl. 12 (1999), p.736.

Google Scholar

[7] N. Cansever, M. Danışman and K. Kazmanlı: Surf. Coat. Technol.Vol. 202 (2008), p.5919.

Google Scholar

[8] M. Benkahoul, E. Martinez, A. Karimi, R. Sanjines and F. Levy: Surf. Coat. Technol. Vol. 180-181 (2004), p.178.

Google Scholar

[9] M. Wen, C. Q. Hu, Q. N. Meng, Z. D. Zhao, T. An, Y. D. Su, W. X. Yu and W. T. Zheng: J. Phys. D: Appl. Phys. Vol. 42 (2009), pp.035304-1.

Google Scholar

[10] M. Raaif: Mater. Chem. Phys. Vol. 224 (2019), p.117.

Google Scholar

[11] M. Łępicka, M. G-Dahlke, D. Pieniak, K. Pasierbiewicz, K. Kryńska and A. Niewczas: Wear Vol. 422-423 (2019), p.68.

DOI: 10.1016/j.wear.2019.01.029

Google Scholar

[12] S. Datta, M. Das, V. K. Balla, S. Bodhak and V. K. Murugesan: Surf. Coat. Technol. Vol. 344 (2018), p.214.

Google Scholar

[13] B. Bouaouina, A. Besnard, S. E. Abaidia, A. Airoudj and F. Bensouici: Surf. Coat. Technol. Vol. 333 (2018), p.32.

Google Scholar

[14] B. Biswas, Y. Purandare, A. A. Sugumaran, D. A.L. Loch, S. Creasey, I. Khan, A. P. Ehiasarian and P. E. Hovsepian: Thin Solid Films. Vol. 636 (2017), p.558.

DOI: 10.1016/j.tsf.2017.06.027

Google Scholar

[15] K. Vasu, M. G. Krishna and K. A. Padmanabhan: Mater. Sci. Vol. 47 (2012), p.3522.

Google Scholar

[16] N. N. Iosad, B. D. Jackson, F. Ferro, J. R. Gao, S. N. Polyakov, P. N. Dmitriev and T. M. Klapwijk: Supercond. Sci. Technol.Vol. 12 (1999), p.736.

DOI: 10.1088/0953-2048/12/11/314

Google Scholar

[17] A. Madan, P. Yashar, M. Shinn and S. A. Barnett: Thin Solid Films. Vol. 302 (1997), p.147.

DOI: 10.1016/s0040-6090(97)00023-0

Google Scholar

[18] X. T. Zeng: Surf. Coat. Technol. Vol. 113 (1999), p.75.

Google Scholar

[19] M. Larsson, M. Bromark, P. Hedenqvist and S. Hogmark: Surf. Coat. Technol. Vol. 91 (1997), p.43.

Google Scholar

[20] M. Larsson, P. Hollman, P. Hedenqvist, S. Hogmark, U. Wahlstrom and L. Hultman: Surf. Coat. Technol. Vol. 86-87 (1996), p.351.

Google Scholar

[21] H. C. Barshilia and K. S. Rajam: Surf. Coat. Technol. Vol. 183 (2004), p.174.

Google Scholar

[22] H. C. Barshilia, K.S. Rajam and D. V. S. Rao: Surf. Coat. Technol. Vol. 200 (2006), p.4586.

Google Scholar

[23] L. Hultman, C. Engstrom and M. Oden: Surf. Coat. Technol. Vol. 133-134 (2000), p.227.

Google Scholar

[24] L. Mendizabal, R. Bayón, E. G-Berasategui, J. Barriga and J. J. Gonzalez: Thin Solid Films. Vol. 610 (2016), p.1.

Google Scholar

[25] K. Singh, N. Krishnamurthy and A. K. Suri: Tribol. Int. Vol. 50 (2012), p.16.

Google Scholar

[26] G. A. Zhang, Z. G. Wu, M. X. Wang, X. Y. Fan, J. Wang and P. X. Yan: Appl. Surf. Sci. Vol. 253 (2007), p.8835.

Google Scholar

[27] L. D. Giudice, S. Adjam, D. L. Grange, O. Banakh, A. Karimi and R. Sanjinés: Surf. Coat. Technol. Vol. 295 (2016), p.99.

Google Scholar

[28] K. L. Rutherford, P. W. Hatto, C. Davies and I. M. Hutchings: Surf. Coat. Technol. Vol. 86-87 (1996), p.472.

Google Scholar

[29] J. Robertson: Mater. Sci. Eng. R. Vol. 37 (2002), p.129.

Google Scholar

[30] M. F. Pillis, G. A. Geribola, G. Scheidt, E. G. de Araújo, M. C. L. de Oliveira and R. Al. Antunes: Corros. Sci. Vol. 102 (2016), p.317.

DOI: 10.1016/j.corsci.2015.10.023

Google Scholar

[31] A. C. Alves, F. Wenger, P. Ponthiaux, J. P. Celis, A. M. Pinto, L. A. Rocha and J. C. S. Fernandes: Electrochim. Acta Vol. 234 (2017), p.1.

Google Scholar

[32] R. Hübler, A. Schröer, W. Ensinger, G. K. Wolf, W. H. Schreiner and I. J. R. Baumvol: Surf. Coat. Technol. Vol. 60 (1993), p.561.

Google Scholar

[33] H. Ju, P. Jia, J. Xu, L. Yu, Y. Geng, Y. Chen, M. Liu and T. Wei: Mater. Chem. Phys. Vol. 215 (2018), p.368.

Google Scholar