Exploration of Thermal Degradation Kinetics of Epoxy Resin Composites

Article Preview

Abstract:

The thermal degradation process of epoxy resin/intumescent flame retardant/flake graphite/hexagonal boron nitride (EP/IFR/FGP/h-BN) was analyzed by thermogravimetry. The effects of binary nano flake graphite/hexagonal boron nitride as synergistic flame retardant on the thermal stability. Flynn wall Ozawa method was used to calculate the activation energy of thermal degradation kinetics of EP/IFR/FGP/h-BN. The mechanism functions of the EP/IFR/FGP/h-BN in different reaction stages were determined according to Malek method, and the thermal degradation mechanism of EP/IFR/FGP/h-BN was obtained. The binary nanoFGP/h-BN is helpful to improve the thermal stability of EP.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

202-206

Citation:

Online since:

November 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Liu, W, Koh, K.L, Lu, J, et. al. Simultaneous catalyzing and reinforcing effects of imidazole-functionalized graphene in anhydride-cured epoxies, J. Mater. Chem. 33(2012) 18395-18402.

DOI: 10.1039/c2jm32708b

Google Scholar

[2] Wu, K, Shen, M. M, Hu, et al. Thermal degradation and intumescent flame retardation of cellulose whisker/epoxy resin composite, J. Therm. Anal. Calorim. 104(2011) 1083-1090.

DOI: 10.1007/s10973-011-1380-5

Google Scholar

[3] Chen, Y, H, Liu, Y, A, Wang, Q, et al. Performance of intumescent flame retardant master batch synthesized through twin-screw reactively extruding technology: effect of component ratio, Polym. Degrad. Stab. 81(2003) 215-224.

DOI: 10.1016/s0141-3910(03)00091-0

Google Scholar

[4] Ding, P, Zhang, J, Song, N, et al. Growing polystyrene chains from the surface of graphene layers via raft polymerization and the influence on their thermal properties, Composites, Part A. 69 (2015) 186-194.

DOI: 10.1016/j.compositesa.2014.11.020

Google Scholar

[5] Flynn, J, H, Wall, L. General treatment of the thermogravimetry of polymers, J. Res. Natl. Bur. Stand. Sect. A 70A (1966).

DOI: 10.6028/jres.070a.043

Google Scholar

[6] Criado, J. M. Kinetic analysis of DTG data from master curves, Thermochim. Acta. (1978).

Google Scholar

[7] Dong, L, Hu, C, Song, L, et al. A large‐area, flexible, and flame‐retardant graphene paper, Adv. Funct. Mater. 26 (2016) 1470-1476.

DOI: 10.1002/adfm.201504470

Google Scholar

[8] Bai, X, Golberg, D, Bando, Y, et al. Deformation-driven electrical transport of individual boron nitride nanotubes, Nano Lett. 7 (2007) 632.

DOI: 10.1021/nl062540l

Google Scholar

[9] Ja Be R, J. O. Influence of heating rate, temperature, and grain size on drying behavior of the attarat oil shale, Energy Sources. 31 (2008) 99-107.

DOI: 10.1080/15567030802454496

Google Scholar

[10] Avni, E. Coughlin, R, W. Kinetic analysis of lignin pyrolysis using non-isothermal TGA data, Thermochim. Acta. 90 (1985) 157-167.

DOI: 10.1016/0040-6031(85)87093-3

Google Scholar

[11] Vyazovkin, S. A unified approach to kinetic processing of nonisothermal data, Int. J. Chem. Kinet. 28 (1996) 95-101.

DOI: 10.1002/(sici)1097-4601(1996)28:2<95::aid-kin4>3.0.co;2-g

Google Scholar