Study on Low Temperature Conduction Mechanism of Al Doped ZnO/SiO2/ P-Si Heterojunction

Article Preview

Abstract:

The 3 at% Al doped ZnO thin films were deposited on p-Si substrate with a native SiO2 layer by spray pyrolysis method. Low temperature conduction behaviors were studied by analysis of impedance spectroscopy and low temperature ac conductivity. The results of impedance spectroscopy showed that the grain boundaries contributed to the resistivity of Al doped ZnO/SiO2/p-Si heterojunction. The calculated activation energy was 0.073 eV for grain boundaries. The equivalent circuit to demonstrate the electrical properties of Al doped ZnO/SiO2/p-Si heterojunction was a series connection of two parallel combination circuits of a resistor and a universal capacitor. Low temperature ac conductivity measurements indicated that the conductivity increased with temperature. Low temperature conductivity mechanism was electron conductivity, and the activation energy was 0.086 eV.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

363-368

Citation:

Online since:

November 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.M. Bagnall, Y.F. Chen, Z. Zhu, et al, Appl. Phys. Lett. 70 (1997) 2230.

Google Scholar

[2] D.C. Look, Matter. Sci. Eng. B 80 (2001) 381.

Google Scholar

[3] B.D. Boruah, Nanoscale Adv. 1 (2019) (2059).

Google Scholar

[4] X. Wang, K.W. Liu, X. Chen, et al, ACS Appl. Mater. Interfaces 9 (2017) 5574.

Google Scholar

[5] V. Sharma, P. Kumar, A. Kumar, et al, Sol. Energy Mater Sol. Cells 169 (2017) 122.

Google Scholar

[6] Y.Z. Sun, Y.B. Jiang, H.R. Peng, et al, Nanoscale 9 (2017) 8962.

Google Scholar

[7] Y. Al-Hadeethi, A. Umar, A.A. Ibrahim, et al, Ceram. Int. 43 (2017) 6765.

Google Scholar

[8] L.Z. Lu, X.T. Jiang, H.Q. Peng, et al, RSC Adv. 8 (2018) 16455.

Google Scholar

[9] R. Vittal, K.C. Ho, Renew. Sust. Energ. Rev. 70 (2016) 920.

Google Scholar

[10] V. Kumar, O.M. Ntwaeaborwa, T. Soga, et al, ACS Photonics 4 (2017) 2613.

Google Scholar

[11] W. Zhang, J. Gan, L.Q. Li, et al, Mater. Sci. Semicond. Process 74 (2018) 147.

Google Scholar

[12] H. Mahdhi, S. Alaya, J.L. Gauffier, et al, J. Alloys Comp. 695 (2017) 697.

Google Scholar

[13] S. Edinger, N. Bansal, M. Bauch, et al, J. Matter. Sci. 52 (2017) 8591.

Google Scholar

[14] Z. Gao Z, N.M.S. Jahed, S. Sivoththaman, et al, IEEE Photon. Technol. Lett. 29 (2017) 111713.

Google Scholar

[15] M. Shasti, A. Mortezaali, R.S. Dariani, J. Appl. Phys. 117 (2015) 023101.

Google Scholar

[16] A. Alyamani, A. Tataroğlu, L.E. Mir, et al, Appl. Phys. A 122 (2016) 297.

Google Scholar

[17] R.A. Ismail, A. Al-Naimi, A.A. Al-Ani, et al, Semicond Sci Technol 23 (2008) 075030.

DOI: 10.1088/0268-1242/23/7/075030

Google Scholar

[18] D.C. Sinclair, A.R. West, J. Appl. Phys. 66 (1989) 3850.

Google Scholar

[19] F.D. Morrison, D.C. Sinclair, A.R. West, J. Am. Ceram. Soc. 84 (2001) 531.

Google Scholar

[20] L.X. Feng, D.L. Wang, G.Y. Shi, et al, Piezoelectrics & Acoustooptics 35 (2013) 588.

Google Scholar

[21] A.K. Jonscher, Nature 267 (1977) 673.

Google Scholar

[22] A. Singh, R. Chatterjee, S.K. Mishra, et al, J. Appl. Phys. 111 (2012) 014113.

Google Scholar

[23] H.X. Ning, M. Wang, H.P. Zhao, et al, Journal of Synthetic Crystals 42 (2013) 2133.

Google Scholar

[24] P. Boch, J.C. Niepce, Ceramic materials process, properties and applications (London: ISTE Ltd), (2007).

Google Scholar