Structural and Optical Studies of Lithium Doped Barium Titanate

Article Preview

Abstract:

This study's goals are to fabricate and analyze the microstructure and optical properties of BT and Li-doped BT as the dependence of the Li concentrations (x) of 0.05, 0.1, and 0.15. The thin films of the BT and Li-doped BT have been successfully deposited on the quartz substrates by the sol-gel method. The microstructure and optical features were characterized via XRD and UV-Vis Spectrophotometer, respectively. The XRD patterns exhibit that the lattice parameter and cell volume of the Li-doped films are bigger than that of the BT due to the existence of Li doping in the BT host structure. Additionally, the tetragonality and crystallite size of all films decrease as the more Li number with the BLTO5 has the biggest lattice strain as compared to the others. Meanwhile, the optical characterization reveals that the transmittance spectra increase and the absorption edges shift to the shorter wavelengths as the addition of Li dopant indicating the bandgap values change. In contrast, the refractive index values of the films reduce by the more Li number.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

358-362

Citation:

Online since:

November 2021

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2021 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Iskandar, R.P. Jenie, U.J. Siregar, B. Yuliarto, Irzaman, Application of thin film barium strontium titanate (BST) in a microcontroller based tool to measure oxygen saturation in blood, Ferroelectrics. 554 (2020) 134-143.

DOI: 10.1080/00150193.2019.1684755

Google Scholar

[2] A. Nahar, M.J. Rahman, S. Choudhury, Enhanced Dielectric properties of Bismuth Doped Barium Titanate Ceramics with their Structural and Compositional Studies, Biointerface Res. Appl. Chem. 11 (2021) 9862 - 9870.

DOI: 10.33263/briac113.98629870

Google Scholar

[3] A. Karvounis, F. Timpu, V.V. Vogler‐Neuling, R. Savo, R. Grange, Barium Titanate Nanostructures and Thin Films for Photonics, Adv. Opt. Mater. 8 (2020).

DOI: 10.1002/adom.202001249

Google Scholar

[4] Q. Lou, X. Shi, X. Ruan, J. Zeng, Z. Man, L. Zheng, C.H. Park, G. Li, Ferroelectric properties of Li-doped BaTiO3 ceramics, J. Am. Ceram. Soc. 101 (2018) 3597-3604.

DOI: 10.1111/jace.15480

Google Scholar

[5] Q.W. Lou, J.T. Zeng, Z.Y. Man, L.Y. Zheng, C.H. Park, G.R. Li, Sintering behavior of high-concentration Li2CO3-doped BaTiO3 ceramics, Appl. Phys. A 125 (2019).

DOI: 10.1007/s00339-019-2556-2

Google Scholar

[6] X. Luo, Y. Li, K. Liu, J. Zhang, Electron transport enhancement of perovskite solar cell due to spontaneous polarization of Li+-doped BaTiO3, Solid State Sci. 108 (2020).

DOI: 10.1016/j.solidstatesciences.2020.106387

Google Scholar

[7] K. Madhan, R. Murugaraj, Enrichment of optical, electrical, and magnetic properties of Li+, La3+ doped BaTiO3 perovskite multifunctional ceramics, Appl. Phys. A 126(2) (2020).

DOI: 10.1007/s00339-020-3285-2

Google Scholar

[8] Y. Iriani, A. Jamaludin, N. Nurhadi, Deposition barium titanate (BaTiO3) doped lanthanum with chemical solution deposition, J. Phys. Conf. Ser. 776 (2016).

DOI: 10.1088/1742-6596/776/1/012064

Google Scholar

[9] K.K. Kumari A, Ahmed F, Alshoaibi A, Alvi PA, Dalela S, Ahmad MM, Aljawfi RN, Dua P, Vij A, Kumar S, Influence of Sm doping on structural, ferroelectric, electrical, optical and magnetic properties of BaTiO3, Vacuum. (2020).

DOI: 10.1016/j.vacuum.2020.109872

Google Scholar

[10] C.L. Fu, W. Cai, Z.B. Lin, W.H. Jiang, Photovoltaic Effects of Bismuth Ferrite and Nd-Doped Barium Titanate Thin Films Prepared by Sol-Gel Method, Mater. Sci. Forum. 787 (2014) 347-351.

DOI: 10.4028/www.scientific.net/msf.787.347

Google Scholar

[11] R. Sengodan, R. Balamurugan, B.C. Shekar, Temperature Dependence on Optical Properties of Sr Doped BaTiO3 Thin films by Vacuum Evaporation Method, Int. J. Thin. Fil. Sci. Tec. 8(3) (2019) 147-156.

Google Scholar

[12] Y. Iriani, F. Nurosyid, A.U.L.S. Setyadi, The effect of mole concentrations of Sr-doped of Bal-XSrxTiO3 film on microstructure, optical, and electrical properties, AIP Conf. Proc. 2296 (2020) 020133.

DOI: 10.1063/5.0032543

Google Scholar

[13] T. Kimura, Q. Dong, S. Yin, T. Hashimoto, A. Sasaki, T. Sato, Synthesis and piezoelectric properties of Li-doped BaTiO3 by a solvothermal approach, J. Eur. Ceram. Soc. 33(5) (2013) 1009-1015.

DOI: 10.1016/j.jeurceramsoc.2012.11.007

Google Scholar

[14] T. Kimura, Q. Dong, S. Yin, T. Hashimoto, A. Sasaki, S. Aisawa, T. Sato, Synthesis and Piezoelectric Properties of Li, Ca and Mn-codoped BaTiO3 by a Solvothermal Approach, IOP Conference Series: Materials Science and Engineering 47 (2013).

DOI: 10.1088/1757-899x/47/1/012018

Google Scholar

[15] E. Praveen, S. Murugan, K. Jayakumar, Effect of lithium doping in BaTiO3 ceramics for vibration sensor application, AIP Conf. Proc. 1942 (2018) 060003.

DOI: 10.1063/1.5028773

Google Scholar

[16] S. Ranjbar, Fabrication of Bismuth Titanate (Bi4Ti3O12) Thin Films: Effect of Annealing Temperature on their Structural and Optical Properties, Sci. Iran. 26(3) (2018) 1990-1996.

DOI: 10.24200/sci.2018.51061.1992

Google Scholar

[17] R. Swanepoel, Determination of the thickness and optical constants of amorphous silicon, J. Phys. E: Sci. Instrum. 16 (1983) 1214-1222.

DOI: 10.1088/0022-3735/16/12/023

Google Scholar

[18] R. Swanepoel, Determination of surface roughness and optical constants of inhomogeneous amorphous silicon films, J. Phys. E: Sci. Instrum. 17 (1984) 896-903.

DOI: 10.1088/0022-3735/17/10/023

Google Scholar

[19] W.F. Zhang, M.S. Zhang, Optical properties of ferroelectric Pb, La Zr, Ti O thin films ž/ž grown by pulsed laser deposition, Appl. Surf. Sci. 158 (2000) 185–189.

DOI: 10.1016/s0169-4332(99)00581-4

Google Scholar

[20] S.H. Wemple, M. DiDomenico, Optical Dispersion and the Structure of Solids, Phys. Rev. Lett. 23(20) (1969) 1156-1160.

DOI: 10.1103/physrevlett.23.1156

Google Scholar

[21] S.H. Wemple, M. DiDomenico, Behavior of the Electronic Dielectric Constant in Covalent and Ionic Materials, Phys. Rev. B 3(4) (1971) 1338-1351.

DOI: 10.1103/physrevb.3.1338

Google Scholar