A Novel 1D Organic Lead Halide Hybrid for Blue and White Dual Emission

Article Preview

Abstract:

In recent years, photoelectric performances of many low-dimensional metal halide hybrid materials have been researched and utilized in the domain of phosphors, light emitting diodes (LEDs) and photoelectric detection etc. Nevertheless, unlike two-dimensional (2D) ones, one-dimensional (1D) hybrids received less attention to study their structures and optical properties. Herein, we deal with luminous performance and photoluminescence mechanism for an original 1D organic-inorganic lead chloride hybrid C5H14N3PbCl3 which is abbreviated as TMGPbCl3 (TMG+ = 1, 1, 3, 3-tetramethyguanidine cation). According to photoluminescence spectra, its broadband white-light luminescence are dual emissions from organic component TMG+ peaked at 429 nm and self-trapped excitons (STEs) of inorganic metal halide octahedra peaked at 510 nm, respectively and this property make it to be a promising white-light phosphor.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

103-108

Citation:

Online since:

January 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Dammak, T., Abid, Y., Quasi-white light emission involving Förster resonance energy transfer in a new organic inorganic tin chloride based material (AMPS)[SnCl6]H2O, Opt. Mater. 66 (2017) 302-307.

DOI: 10.1016/j.optmat.2017.02.020

Google Scholar

[2] Zhou, H., Chen, Q., Li, G., Luo, S., Song, T.-b., Duan, H.-S., Hong, Z., You, J., Liu, Y., Yang, Y., Interface engineering of highly efficient perovskite solar cells, Science, 345 (2014) 542-546.

DOI: 10.1126/science.1254050

Google Scholar

[3] Information on https://www.nrel.gov/pv/cell-efficiency.html.

Google Scholar

[4] Cortecchia, D., Yin, J., Petrozza, A., Soci, C., White light emission in low-dimensional perovskites, J. Mater. Chem. C 7 (2019) 4956-4969.

DOI: 10.1039/c9tc01036j

Google Scholar

[5] Dohner, E. R., Hoke, E. T., Karunadasa, H. I., Self-assembly of broadband white-light emitters, J. Am. Chem. Soc. 136 (2014) 1718-1721.

DOI: 10.1021/ja411045r

Google Scholar

[6] Toyozawa, Y., Excitonic instabilities of deformable lattice-from self-trapping to phase transition, Acta Phys. Pol. A 87 (1995) 47-56.

DOI: 10.12693/aphyspola.87.47

Google Scholar

[7] Han, Y., Li, Y., Wang, Y., Cao, G., Yue, S., Zhang, L., Cui, B. B., Chen, Q., From distortion to disconnection: Linear alkyl diammonium cations tune structure and photoluminescence of lead bromide perovskites, Adv. Opt. Mater. 8 (2020) 1902051.

DOI: 10.1002/adom.201902051

Google Scholar

[8] Wang, G.-E., Xu, G., Wang, M.-S., Cai, L.-Z., Li, W.-H., Guo, G.-C., Semiconductive 3-D haloplumbate framework hybrids with high color rendering index white-light emission, Chem. Sci. 6 (2015) 7222-7226.

DOI: 10.1039/c5sc02501j

Google Scholar

[9] Peng, Y., Yao, Y., Li, L., Wu, Z., Wang, S., Luo, J., White-light emission in a chiral one-dimensional organic–inorganic hybrid perovskite, J. Mater. Chem. C 6 (2018) 6033-6037.

DOI: 10.1039/c8tc01150h

Google Scholar

[10] Cui, B.-B., Han, Y., Huang, B., Zhao, Y., Wu, X., Liu, L., Cao, G., Du, Q., Liu, N., Zou, W., Locally collective hydrogen bonding isolates lead octahedra for white emission improvement, Nat. Commun. 10 (2019) 1-8.

DOI: 10.1038/s41467-019-13264-5

Google Scholar

[11] Mao, L., Guo, P., Kepenekian, M., Hadar, I., Katan, C., Even, J., Schaller, R. D., Stoumpos, C. C., Kanatzidis, M. G., Structural diversity in white-light-emitting hybrid lead bromide perovskites, J. Am. Chem. Soc. 140 (2018) 13078-13088.

DOI: 10.1021/jacs.8b08691

Google Scholar

[12] Knutson, J. L., Martin, J. D., Mitzi, D. B., Tuning the band gap in hybrid tin iodide perovskite semiconductors using structural templating, Inorg. Chem. 44 (2005) 4699-4705.

DOI: 10.1021/ic050244q

Google Scholar