Third-Order Nonlinear Optical Properties of Ge-Ga-S Chalcogenide Glasses

Article Preview

Abstract:

We have prepared GexGa4S96-x glasses for x=22.5, 27, 30 and 33.3 and GexGa8S92-x for x=32, 36 and measured their linear and nonlinear optical properties. The glasses exhibit broad transmission at a wavelength range from 1 to 12 μm. The evolution of linear, nonlinear index and two-photon absorption as a function of the content of Ge, and the relationship of n2 and β with linear refractive index and optical bandgap are analyzed. While the evolution of n2 and β is closer to the prediction by Sheik-Bahae et.al for optical nonlinearity of semiconductors. Eg of Ge-Ga-S is found to vary from 2.33 to 2.99eV, and the largest nonlinear index is 1.16×10-14cm2/W at composition of Ge32Ga8S60 .

You might also be interested in these eBooks

Info:

Periodical:

Pages:

109-114

Citation:

Online since:

January 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Zakery and S. R. Elliott, Optical Nonlinearities in Chalcogenide Glasses and their Applications (Springer, 2007).

Google Scholar

[2] R. P. Wang, Amorphous chalcogenides: advances and applications (Pan Stanford Publishing. 2014).

Google Scholar

[3] F. Smektala, C. Quemard, L. Leneindre, J. Lucas, A. Barthelemy, and C. De Angelis, Chalcogenide glasses with large non-linear refractive indices,, J. Non-Cryst. Solids 239(1-3), 139–142 (1998).

DOI: 10.1016/s0022-3093(98)00730-3

Google Scholar

[4] C. Quemard, F. Smektala, V. Couderc, A. Barthelemy, and J. Lucas, Chalcogenide glasses with high non-linear optical properties for telecommunications,, J. Phys. Chem. Solids 62(8), 1435–1440 (2001).

DOI: 10.1016/s0022-3697(01)00059-2

Google Scholar

[5] X. Gai, D.-Y. Choi, S. Madden, Z. Yang, R. Wang and B. Luther-Davies, Supercontinuum generation in the mid-infrared from a dispersion-engineered As2S3 glass rib waveguide,, Opt. Lett. 37(18), 3870-3872 (2012).

DOI: 10.1364/ol.37.003870

Google Scholar

[6] Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D. Y. Choi, S. Madden and B. Luther Davies, 1.8-10 μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power,, Opt. Lett. 40(6), 1081-1084 (2015).

DOI: 10.1364/ol.40.001081

Google Scholar

[7] Chuanfei, Yao, Zhixu, et al. High-power mid-infrared supercontinuum laser source using fluor tellurite fiber,, Optica, 2018, 5(10):1264-1270.

DOI: 10.1364/optica.5.001264

Google Scholar

[8] Zhao Z , Wu B , Wang X , et al. Mid‐infrared supercontinuum covering 2.0–16μm in a low‐loss telluride single‐mode fiber,, Laser & Photonics Reviews, 2017, 11(2).

DOI: 10.1002/lpor.201700005

Google Scholar

[9] Asobe, M, Ohara, et al. Low power all-optical switching in a nonlinear optical loop mirror using chalcogenide glass fiber,, Electronics Letters- IEE, 1996,32(15): 1396.

DOI: 10.1049/el:19960910

Google Scholar

[10] K. Ogusu, J. Y amasaki, S. Maeda, M. Kitao, and M. Mina kata, Linear and nonlinear optical properties of Ag-As-Se chalcogenide glasses for all-optical switching,, Opt. Lett.29(3), 265–267 (2004).

DOI: 10.1364/ol.29.000265

Google Scholar

[11] A. Prasad, C. J. Zha, R. P. Wang, A. Smith, S. Madden, and B. Luther-Davies, Properties of GexAsySe100-x-y glasses for all-optical signal processing,, Opt. Express16(4), 2804–2815 (2008).

DOI: 10.1364/oe.16.002804

Google Scholar

[12] T. Halencovic, J. Gut Wirth, T. Kuriakose, M. Bourka, and V. Nazabal, Linear and nonlinear optical properties of co-sputtered Ge-Sb-Se amorphous thin films,, Opt. Lett. 45(6), 1523–1526 (2020).

DOI: 10.1364/ol.386775

Google Scholar

[13] Qiuli Li, RongPing Wang, Fu Xu, et al. Third-order nonlinear optical properties of Ge-As-Te chalcogenide glasses in mid-infrared,, Opt. Materials Express, 2020, 10(6).

DOI: 10.1364/ome.392655

Google Scholar

[14] B. Gu, J. Wang, J. Chen, Y. X. Fan, J. P. Ding, and H. T. Wang, Z-scan theory for material with two- and three-photon absorption,, Opt. Express 13(23), 9230–9234 (2005).

DOI: 10.1364/opex.13.009230

Google Scholar

[15] J. Tauc and A. Menth, States in the gap,, J. Non-Cryst. Solids 8-10(8), 569-585(1972).

DOI: 10.1016/0022-3093(72)90194-9

Google Scholar

[16] T. Wang, X. Gai, W. Wei, R. Wang, Z.Yang, X. Shen, S. Madden, and B. Luther-Davies, Systematic Z-scan measurements of the third order nonlinearity of chalcogenide glasses,, Opt. Mater. Express 4(5), 1011-1022(2014).

DOI: 10.1364/ome.4.001011

Google Scholar

[17] Asobe M, Kanamori T, Kubodera K I. Application of highly nonlinear chalcogenide glass fibers in ultrafast all-optical switches,, IEEE Journal of Quantum Electronics, 1993, 29(8): 2325-2333.

DOI: 10.1109/3.245562

Google Scholar

[18] http://en.wikipedia.org/wiki/Atomic_radius.

Google Scholar

[19] Marchese D, Sario M D, Jha A, et al. Highly nonlinear Ge2S-based chalcogenide glass for all-optical twin-core-fiber switching,, Journal of the Optical Society of America B, 1998, 15(15): 2361-2370.

DOI: 10.1364/josab.15.002361

Google Scholar

[20] R. W. Boyd, Nonlinear Optics, Second Edition (Academic Press Inc, 2003).

Google Scholar

[21] M. Sheik Bahae, A. A. Said, T. H. Wei, D. J. Hagan and E. W. Van Stryland, Sensitive measurement of optical nonlinearities using a single beam,, IEEE J. Quantum Electron. 26(4), 760-769 (1990).

DOI: 10.1109/3.53394

Google Scholar

[22] M. Sheik Bahae, D. J. Hagan and E. W. Van Stryland, Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photo absorption,, Phys. Rev. Lett. 65(1), 96-99(1990).

DOI: 10.1103/physrevlett.65.96

Google Scholar

[23] M. Dinu, Dispersion of phonon-assisted nonresonant third-order nonlinearities,, IEEE J. Quantum Electron. 39(11), 1498-1503(2003).

DOI: 10.1109/jqe.2003.818277

Google Scholar