Thermo-Resistive Flexible All-Solid-State Supercapacitor Printed by Laser Lithography

Article Preview

Abstract:

Supercapacitors become promising devices to apply in some field like wearable device because the impressive electrochemical performance and excellent safety performance. Liquid electrolytes bring some problems such as leakage and vapor tension. Meanwhile, temperature-tolerance is an important topic in supercapacitor. Solid polymer electrolytes, a separator for active electrodes, possess many advantages over liquid electrolytes like devoid of leakage, chemical and mechanical stabilities over a wide temperature rand and non-volatility. In this paper, a double network solid state electrolyte was developed. A densely crosslinked polyvinyl alcohol (C-PVA) will become the first network and the coarsely crosslinked poly (2-hydroxyethyl methacrylate) (C-pHEMA) as the second network. The 1-ethyl-3-methylimidazolium bis (trifluoro-methylsulfonyl) imide (EMImTFSI) as ionic liquid. Mean-while, PBI solid-state el-ectrolyte is another thing we want to synthesis. Porous H3PO4-doped PBI will supply outstanding mechanical property and wide temperature range. Through water vapor, we can get porous gel. The poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) was modified with MMT and ILs to increase the ionic conductivity and wide window of electrochemical stability.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

127-134

Citation:

Online since:

January 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Wang, Y.; Song, Y.; Xia, Y., Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem Soc Rev 2016, 45 (21), 5925-5950.

DOI: 10.1039/c5cs00580a

Google Scholar

[2] Largeot, C.; Portet, C.; Chmiola, J.; Taberna, P.-L.; Gogotsi, Y.; Simon, P., Relation between the Ion Size and Pore Size for an Electric Double-Layer Capacitor. Journal of the American Chemical Society 2008, 130 (9), 2730-2731.

DOI: 10.1021/ja7106178

Google Scholar

[3] Asbani, B.; Douard, C.; Brousse, T.; Le Bideau, J., High temperature solid-state supercapacitor designed with ionogel electrolyte. Energy Storage Materials 2019, 21, 439-445.

DOI: 10.1016/j.ensm.2019.06.004

Google Scholar

[4] Gong, J. P., Materials both Tough and Soft. Science 2014, 344 (6180), 161.

Google Scholar

[5] Rana, H. H.; Park, J. H.; Ducrot, E.; Park, H.; Kota, M.; Han, T. H.; Lee, J. Y.; Kim, J.; Kim, J.-H.; Howlett, P.; Forsyth, M.; MacFarlane, D.; Park, H. S., Extreme properties of double networked ionogel electrolytes for flexible and durable energy storage devices. Energy Storage Materials 2019, 19, 197-205.

DOI: 10.1016/j.ensm.2018.11.008

Google Scholar

[6] Guyomard-Lack, A.; Abusleme, J.; Soudan, P.; Lestriez, B.; Guyomard, D.; Bideau, J. L., Hybrid Silica–Polymer Ionogel Solid Electrolyte with Tunable Properties. Advanced Energy Materials 2014, 4 (8), 1301570.

DOI: 10.1002/aenm.201301570

Google Scholar

[7] Kamio, E.; Yasui, T.; Iida, Y.; Gong, J. P.; Matsuyama, H., Inorganic/Organic Double-Network Gels Containing Ionic Liquids. Adv Mater 2017, 29 (47).

DOI: 10.1002/adma.201704118

Google Scholar

[8] Asbani, B.; Douard, C.; Brousse, T.; Le Bideau, J., High temperature solid-state supercapacitor designed with ionogel electrolyte. Energy Storage Materials 2019, 21, 439-445.

DOI: 10.1016/j.ensm.2019.06.004

Google Scholar

[9] Vogel, H.; Marvel, C. S., Polybenzimidazoles, new thermally stable polymers. Journal of Polymer Science 1961, 50 (154), 511-539.

DOI: 10.1002/pol.1961.1205015419

Google Scholar

[10] Kim, S.-K.; Kim, H. J.; Lee, J.-C.; Braun, P. V.; Park, H. S., Extremely Durable, Flexible Supercapacitors with Greatly Improved Performance at High Temperatures. ACS Nano 2015, 9 (8), 8569-8577.

DOI: 10.1021/acsnano.5b03732

Google Scholar

[11] Chaichi, A.; Venugopalan, G.; Devireddy, R.; Arges, C.; Gartia, M. R., A Solid-State and Flexible Supercapacitor That Operates across a Wide Temperature Range. ACS Applied Energy Materials 2020, 3 (6), 5693-5704.

DOI: 10.1021/acsaem.0c00636

Google Scholar

[12] Lu, W.; Yuan, Z.; Zhao, Y.; Zhang, H.; Zhang, H.; Li, X., Porous membranes in secondary battery technologies. Chem Soc Rev 2017, 46 (8), 2199-2236.

DOI: 10.1039/c6cs00823b

Google Scholar

[13] Jia, R.; Li, L.; Ai, Y.; Du, H.; Zhang, X.; Chen, Z.; Shen, G., Self-healable wire-shaped supercapacitors with two twisted NiCo2O4 coated polyvinyl alcohol hydrogel fibers. Science China Materials 2018, 61 (2), 254-262.

DOI: 10.1007/s40843-017-9177-5

Google Scholar

[14] Shang, Y.; Wei, J.; Wu, C.; Wang, Q., Extreme Temperature-Tolerant Organohydrogel Electrolytes for Laminated Assembly of Biaxially Stretchable Pseudocapacitors. ACS Appl Mater Interfaces 2018, 10 (49), 42959-42966.

DOI: 10.1021/acsami.8b12106

Google Scholar

[15] Mao, T.; Wang, S.; Wang, X.; Liu, F.; Li, J.; Chen, H.; Wang, D.; Liu, G.; Xu, J.; Wang, Z., High-Temperature and All-Solid-State Flexible Supercapacitors with Excellent Long-Term Stability Based on Porous Polybenzimidazole/Functional Ionic Liquid Electrolyte. ACS Appl Mater Interfaces 2019, 11 (19), 17742-17750.

DOI: 10.1021/acsami.9b00452

Google Scholar

[16] Qin, Q.; Du, X.; Xu, C.; Huang, S.; Wang, W.; Zhang, Y.; Yan, J.; Liu, J.; Wu, Y., Flexible Supercapacitors Based on Solid Ion Conducting Polymer with High Mechanical Strength. Journal of The Electrochemical Society 2017, 164 (9), A1952-A1957.

DOI: 10.1149/2.0771709jes

Google Scholar