[1]
Wang, Y.; Song, Y.; Xia, Y., Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem Soc Rev 2016, 45 (21), 5925-5950.
DOI: 10.1039/c5cs00580a
Google Scholar
[2]
Largeot, C.; Portet, C.; Chmiola, J.; Taberna, P.-L.; Gogotsi, Y.; Simon, P., Relation between the Ion Size and Pore Size for an Electric Double-Layer Capacitor. Journal of the American Chemical Society 2008, 130 (9), 2730-2731.
DOI: 10.1021/ja7106178
Google Scholar
[3]
Asbani, B.; Douard, C.; Brousse, T.; Le Bideau, J., High temperature solid-state supercapacitor designed with ionogel electrolyte. Energy Storage Materials 2019, 21, 439-445.
DOI: 10.1016/j.ensm.2019.06.004
Google Scholar
[4]
Gong, J. P., Materials both Tough and Soft. Science 2014, 344 (6180), 161.
Google Scholar
[5]
Rana, H. H.; Park, J. H.; Ducrot, E.; Park, H.; Kota, M.; Han, T. H.; Lee, J. Y.; Kim, J.; Kim, J.-H.; Howlett, P.; Forsyth, M.; MacFarlane, D.; Park, H. S., Extreme properties of double networked ionogel electrolytes for flexible and durable energy storage devices. Energy Storage Materials 2019, 19, 197-205.
DOI: 10.1016/j.ensm.2018.11.008
Google Scholar
[6]
Guyomard-Lack, A.; Abusleme, J.; Soudan, P.; Lestriez, B.; Guyomard, D.; Bideau, J. L., Hybrid Silica–Polymer Ionogel Solid Electrolyte with Tunable Properties. Advanced Energy Materials 2014, 4 (8), 1301570.
DOI: 10.1002/aenm.201301570
Google Scholar
[7]
Kamio, E.; Yasui, T.; Iida, Y.; Gong, J. P.; Matsuyama, H., Inorganic/Organic Double-Network Gels Containing Ionic Liquids. Adv Mater 2017, 29 (47).
DOI: 10.1002/adma.201704118
Google Scholar
[8]
Asbani, B.; Douard, C.; Brousse, T.; Le Bideau, J., High temperature solid-state supercapacitor designed with ionogel electrolyte. Energy Storage Materials 2019, 21, 439-445.
DOI: 10.1016/j.ensm.2019.06.004
Google Scholar
[9]
Vogel, H.; Marvel, C. S., Polybenzimidazoles, new thermally stable polymers. Journal of Polymer Science 1961, 50 (154), 511-539.
DOI: 10.1002/pol.1961.1205015419
Google Scholar
[10]
Kim, S.-K.; Kim, H. J.; Lee, J.-C.; Braun, P. V.; Park, H. S., Extremely Durable, Flexible Supercapacitors with Greatly Improved Performance at High Temperatures. ACS Nano 2015, 9 (8), 8569-8577.
DOI: 10.1021/acsnano.5b03732
Google Scholar
[11]
Chaichi, A.; Venugopalan, G.; Devireddy, R.; Arges, C.; Gartia, M. R., A Solid-State and Flexible Supercapacitor That Operates across a Wide Temperature Range. ACS Applied Energy Materials 2020, 3 (6), 5693-5704.
DOI: 10.1021/acsaem.0c00636
Google Scholar
[12]
Lu, W.; Yuan, Z.; Zhao, Y.; Zhang, H.; Zhang, H.; Li, X., Porous membranes in secondary battery technologies. Chem Soc Rev 2017, 46 (8), 2199-2236.
DOI: 10.1039/c6cs00823b
Google Scholar
[13]
Jia, R.; Li, L.; Ai, Y.; Du, H.; Zhang, X.; Chen, Z.; Shen, G., Self-healable wire-shaped supercapacitors with two twisted NiCo2O4 coated polyvinyl alcohol hydrogel fibers. Science China Materials 2018, 61 (2), 254-262.
DOI: 10.1007/s40843-017-9177-5
Google Scholar
[14]
Shang, Y.; Wei, J.; Wu, C.; Wang, Q., Extreme Temperature-Tolerant Organohydrogel Electrolytes for Laminated Assembly of Biaxially Stretchable Pseudocapacitors. ACS Appl Mater Interfaces 2018, 10 (49), 42959-42966.
DOI: 10.1021/acsami.8b12106
Google Scholar
[15]
Mao, T.; Wang, S.; Wang, X.; Liu, F.; Li, J.; Chen, H.; Wang, D.; Liu, G.; Xu, J.; Wang, Z., High-Temperature and All-Solid-State Flexible Supercapacitors with Excellent Long-Term Stability Based on Porous Polybenzimidazole/Functional Ionic Liquid Electrolyte. ACS Appl Mater Interfaces 2019, 11 (19), 17742-17750.
DOI: 10.1021/acsami.9b00452
Google Scholar
[16]
Qin, Q.; Du, X.; Xu, C.; Huang, S.; Wang, W.; Zhang, Y.; Yan, J.; Liu, J.; Wu, Y., Flexible Supercapacitors Based on Solid Ion Conducting Polymer with High Mechanical Strength. Journal of The Electrochemical Society 2017, 164 (9), A1952-A1957.
DOI: 10.1149/2.0771709jes
Google Scholar