[1]
Yuan, L. X., Wang, Z. H., Zhang, W. X., Hu, X. L., Chen, J. T., Huang, Y. H., & Goodenough, J. B. (2011). Development and challenges of LiFePO4 cathode material for lithium-ion batteries. Energy and Environmental Science, 4(2), 269–284. https://doi.org/10.1039/c0ee00029a.
DOI: 10.1039/c0ee00029a
Google Scholar
[2]
Chu, S., & Majumdar, A. (2012). Opportunities and challenges for a sustainable energy future. Nature, 488(7411), 294–303. https://doi.org/10.1038/nature11475.
DOI: 10.1038/nature11475
Google Scholar
[3]
O'Heir, J. (2017). Building better batteries. Mechanical Engineering, 139(1), 10–11.
Google Scholar
[4]
Goodenough, J. B., & Park, K. S. (2013). The Li-ion rechargeable battery: A perspective. Journal of the American Chemical Society, 135(4), 1167–1176. https://doi.org/10.1021/ja3091438.
DOI: 10.1021/ja3091438
Google Scholar
[5]
Simon, P., & Gogotsi, Y. (2010). Materials for electrochemical capacitors. Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group, 138–147. https://doi.org/10.1142/9789814317665_0021.
DOI: 10.1142/9789814317665_0021
Google Scholar
[6]
Nzabahimana, J., Liu, Z., Guo, S., Wang, L., & Hu, X. (2020). Top-Down Synthesis of Silicon/Carbon Composite Anode Materials for Lithium-Ion Batteries: Mechanical Milling and Etching. ChemSusChem, 13(8), 1923–1946. https://doi.org/10.1002/cssc.201903155.
DOI: 10.1002/cssc.201903155
Google Scholar
[7]
de la Torre-Gamarra, C., Sotomayor, M. E., Sanchez, J. Y., Levenfeld, B., Várez, A., Laïk, B., & Pereira-Ramos, J. P. (2020). High mass loading additive-free LiFePO4 cathodes with 500 μm thickness for high areal capacity Li-ion batteries. Journal of Power Sources, 458(February). https://doi.org/10.1016/j.jpowsour.2020.228033.
DOI: 10.1016/j.jpowsour.2020.228033
Google Scholar
[8]
Huang, W. J., Zheng, J. Y., Liu, J. J., Yang, R. M., Cheng, F. X., Suo, H. B., Guo, H., & Xia, S. B. (2020). Boosting rate performance of LiNi0.8Co0.15Al0.05O2 cathode by simply mixing lithium iron phosphate. Journal of Alloys and Compounds, 827, 154296. https://doi.org/10.1016/j.jallcom.2020.154296.
DOI: 10.1016/j.jallcom.2020.154296
Google Scholar
[9]
Wang, L., He, X., Sun, W., Wang, J., Li, Y., & Fan, S. (2012). Crystal orientation tuning of LiFePO4 nanoplates for high rate lithium battery cathode materials. Nano Letters, 12(11), 5632–5636. https://doi.org/10.1021/nl3027839.
DOI: 10.1021/nl3027839
Google Scholar
[10]
Simon, P., & Gogotsi, Y. (2013). Capacitive Energy Storage in Nanostructured Carbon-Electrolyte Systems. Accounts of Chemical Research, 46(5), 1094–1103. https://doi.org/10.1021/ar200306b.
DOI: 10.1021/ar200306b
Google Scholar
[11]
González, A., Goikolea, E., Barrena, J. A., & Mysyk, R. (2016). Review on supercapacitors: Technologies and materials. Renewable and Sustainable Energy Reviews, 58, 1189–1206. https://doi.org/10.1016/j.rser.2015.12.249.
DOI: 10.1016/j.rser.2015.12.249
Google Scholar
[12]
Deng, L., Wang, J., Zhu, G., Kang, L., Hao, Z., Lei, Z., Yang, Z., & Liu, Z. H. (2014). RuO2/graphene hybrid material for high performance electrochemical capacitor. Journal of Power Sources, 248, 407–415. https://doi.org/10.1016/j.jpowsour.2013.09.081.
DOI: 10.1016/j.jpowsour.2013.09.081
Google Scholar
[13]
Largeot, C., Portet, C., Chmiola, J., Taberna, P. L., Gogotsi, Y., & Simon, P. (2008). Relation between the ion size and pore size for an electric double-layer capacitor. Journal of the American Chemical Society, 130(9), 2730–2731. https://doi.org/10.1021/ja7106178.
DOI: 10.1021/ja7106178
Google Scholar
[14]
Lukatskaya, M. R., Kota, S., Lin, Z., Zhao, M. Q., Shpigel, N., Levi, M. D., Halim, J., Taberna, P. L., Barsoum, M. W., Simon, P., & Gogotsi, Y. (2017). Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nature Energy, 6(July), 1–6. https://doi.org/10.1038/nenergy.2017.105.
DOI: 10.1038/nenergy.2017.105
Google Scholar
[15]
Liu, C., Yu, Z., Neff, D., Zhamu, A., & Jang, B. Z. (2010). Graphene-based supercapacitor with an ultrahigh energy density. Nano Letters, 10(12), 4863–4868. https://doi.org/10.1021/nl102661q.
DOI: 10.1021/nl102661q
Google Scholar
[16]
Niu, J., Conway, B. E., & Pell, W. G. (2004). Comparative studies of self-discharge by potential decay and float-current measurements at C double-layer capacitor and battery electrodes. Journal of Power Sources, 135(1–2), 332–343. https://doi.org/10.1016/j.jpowsour.2004.03.068.
DOI: 10.1016/j.jpowsour.2004.03.068
Google Scholar
[17]
Wang, Z., Xu, Z., Huang, H., Chu, X., Xie, Y., Xiong, D., Yan, C., Zhao, H., Zhang, H., & Yang, W. (2020). Unraveling and regulating self-discharge behavior of Ti3C2Tx MXene-based supercapacitors. ACS Nano, 14(4), 4916–4924. https://doi.org/10.1021/acsnano.0c01056.
DOI: 10.1021/acsnano.0c01056
Google Scholar
[18]
Wang, Z., Chu, X., Xu, Z., Su, H., Yan, C., Liu, F., Gu, B., Huang, H., Xiong, D., Zhang, H., Deng, W., Zhang, H., & Yang, W. (2019). Extremely low self-discharge solid-state supercapacitors: Via the confinement effect of ion transfer. Journal of Materials Chemistry A, 7(14), 8633–8640. https://doi.org/10.1039/c9ta01028a.
DOI: 10.1039/c9ta01028a
Google Scholar
[19]
Homola, T., Pospíšil, J., Krumpolec, R., Souček, P., Dzik, P., Weiter, M., & Černák, M. (2018). Atmospheric Dry Hydrogen Plasma Reduction of Inkjet-Printed Flexible Graphene Oxide Electrodes. ChemSusChem, 11(5), 941–947. https://doi.org/10.1002/cssc.201702139.
DOI: 10.1002/cssc.201702139
Google Scholar
[20]
Avireddy, H., Byles, B. W., Pinto, D., Delgado Galindo, J. M., Biendicho, J. J., Wang, X., Flox, C., Crosnier, O., Brousse, T., Pomerantseva, E., Morante, J. R., & Gogotsi, Y. (2019). Stable high-voltage aqueous pseudocapacitive energy storage device with slow self-discharge. Nano Energy, 64(August), 103961. https://doi.org/10.1016/j.nanoen.2019.103961.
DOI: 10.1016/j.nanoen.2019.103961
Google Scholar
[21]
Simon P, Burke A. Nanostructured carbons: double-layer capacitance and more. Electrochem. Soc. Interface 2008; 17(1): 38–44. URL /http://www.electrochem.org/dl/interface/spr/spr08/spr08_p38-43.pdfS.
DOI: 10.1149/2.f05081if
Google Scholar
[22]
Jurewicz K, Vix-Guterl C. Capacitance properties of ordered porous carbonmaterials prepared by a templating procedure. J Phys Chem Solids 2004; 65: 287–93. http://dx.doi.org/10.1016/j.jpcs.2003.10.024 URL 〈http://www.sciencedirect.com/science/article/pii/ S0022369703003858〉.
DOI: 10.1016/j.jpcs.2003.10.024
Google Scholar
[23]
Kumar, V. B., Borenstein, A., Markovsky, B., Aurbach, D., Gedanken, A., Talianker, M., & Porat, Z. (2016). Activated Carbon Modified with Carbon Nanodots as Novel Electrode Material for Supercapacitors. Journal of Physical Chemistry C, 120(25), 13406–13413. https://doi.org/10.1021/acs.jpcc.6b04045.
DOI: 10.1021/acs.jpcc.6b04045
Google Scholar
[24]
Guo, F. M., Xu, R. Q., Cui, X., Zang, X. B., Zhang, L., Chen, Q., Wang, K. L., & Wei, J. Q. (2015). Highly flexible, tailorable and all-solid-state supercapacitors from carbon nanotube-MnOx composite films. RSC Advances, 5(108), 89188–89194. https://doi.org/10.1039/c5ra16771j.
DOI: 10.1039/c5ra16771j
Google Scholar
[25]
Weinstein, L. & Dash, R. Supercapacitor carbons. Mater. Today 16, 356–357 (2013).
Google Scholar
[26]
Chun, S. E., Evanko, B., Wang, X., Vonlanthen, D., Ji, X., Stucky, G. D., & Boettcher, S. W. (2015). Design of aqueous redox-enhanced electrochemical capacitors with high specific energies and slow self-discharge. Nature Communications, 6. https://doi.org/10.1038/ncomms8818.
DOI: 10.1038/ncomms8818
Google Scholar
[27]
Gongadze, E., van Rienen, U., & Iglič, A. (2011). Generalized stern models of the electric double layer considering the spatial variation of permittvity and finite size of ions in saturation regime. Cellular and Molecular Biology Letters, 16(4), 576–594. https://doi.org/10.2478/s11658-011-0024-x.
DOI: 10.2478/s11658-011-0024-x
Google Scholar
[28]
Huang, Y., Liu, X., Li, S., & Yan, T. (2015). Development of mean-field electrical double layer theory.
Google Scholar
[29]
Augustyn, V., Simon, P., & Dunn, B. (2014). Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy and Environmental Science, 7(5), 1597–1614. https://doi.org/10.1039/c3ee44164d.
DOI: 10.1039/c3ee44164d
Google Scholar
[30]
Béguin, F. et al. (2014) Carbons and electrolytes for advanced supercapacitors,, Advanced Materials, 26(14), p.2219–2251.
DOI: 10.1002/adma.201304137
Google Scholar
[31]
Zhu, Y. et al. (2011) Carbon-Based Supercapacitors,, 332(June), p.1537–1542.
Google Scholar
[32]
Gu, W. et al. (2013) Sulfur-containing activated carbons with greatly reduced content of bottle neck pores for double-layer capacitors: A case study for pseudocapacitance detection,, Energy and Environmental Science, 6(8), p.2465–2476.
DOI: 10.1039/c3ee41182f
Google Scholar
[33]
Hwang, J. Y. et al. (2017) Next-Generation Activated Carbon Supercapacitors: A Simple Step in Electrode Processing Leads to Remarkable Gains in Energy Density,, Advanced Functional Materials, 27(15).
DOI: 10.1002/adfm.201605745
Google Scholar
[34]
Paleo, A. J. et al. (2018) Supercapacitors based on AC/MnO2 deposited onto dip-coated carbon nanofiber cotton fabric electrodes,, Energy Storage Materials, 12, p.204–215.
DOI: 10.1016/j.ensm.2017.12.013
Google Scholar