An Effective Designing of Supercapacitor Mitigating Self-Discharge

Article Preview

Abstract:

Supercapacitor is a kind of effective energy storage device with merits such as high power density, long cycling life and so on, but their application is limited nowadays compared to the application of batteries. One important restriction is because of the serious self-discharge in supercapacitors, and how to conquer the self-discharge problem is an important issue. In this article we propose an effective way to reduce self-discharge of the supercapacitor by carefully designing of activated carbon (ACs) electrodes and water-in salt electrolyte. The electrochemical characterization shows that our supercapacitor can have the ability to reduce self-discharge.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

147-159

Citation:

Online since:

January 2022

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Yuan, L. X., Wang, Z. H., Zhang, W. X., Hu, X. L., Chen, J. T., Huang, Y. H., & Goodenough, J. B. (2011). Development and challenges of LiFePO4 cathode material for lithium-ion batteries. Energy and Environmental Science, 4(2), 269–284. https://doi.org/10.1039/c0ee00029a.

DOI: 10.1039/c0ee00029a

Google Scholar

[2] Chu, S., & Majumdar, A. (2012). Opportunities and challenges for a sustainable energy future. Nature, 488(7411), 294–303. https://doi.org/10.1038/nature11475.

DOI: 10.1038/nature11475

Google Scholar

[3] O'Heir, J. (2017). Building better batteries. Mechanical Engineering, 139(1), 10–11.

Google Scholar

[4] Goodenough, J. B., & Park, K. S. (2013). The Li-ion rechargeable battery: A perspective. Journal of the American Chemical Society, 135(4), 1167–1176. https://doi.org/10.1021/ja3091438.

DOI: 10.1021/ja3091438

Google Scholar

[5] Simon, P., & Gogotsi, Y. (2010). Materials for electrochemical capacitors. Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group, 138–147. https://doi.org/10.1142/9789814317665_0021.

DOI: 10.1142/9789814317665_0021

Google Scholar

[6] Nzabahimana, J., Liu, Z., Guo, S., Wang, L., & Hu, X. (2020). Top-Down Synthesis of Silicon/Carbon Composite Anode Materials for Lithium-Ion Batteries: Mechanical Milling and Etching. ChemSusChem, 13(8), 1923–1946. https://doi.org/10.1002/cssc.201903155.

DOI: 10.1002/cssc.201903155

Google Scholar

[7] de la Torre-Gamarra, C., Sotomayor, M. E., Sanchez, J. Y., Levenfeld, B., Várez, A., Laïk, B., & Pereira-Ramos, J. P. (2020). High mass loading additive-free LiFePO4 cathodes with 500 μm thickness for high areal capacity Li-ion batteries. Journal of Power Sources, 458(February). https://doi.org/10.1016/j.jpowsour.2020.228033.

DOI: 10.1016/j.jpowsour.2020.228033

Google Scholar

[8] Huang, W. J., Zheng, J. Y., Liu, J. J., Yang, R. M., Cheng, F. X., Suo, H. B., Guo, H., & Xia, S. B. (2020). Boosting rate performance of LiNi0.8Co0.15Al0.05O2 cathode by simply mixing lithium iron phosphate. Journal of Alloys and Compounds, 827, 154296. https://doi.org/10.1016/j.jallcom.2020.154296.

DOI: 10.1016/j.jallcom.2020.154296

Google Scholar

[9] Wang, L., He, X., Sun, W., Wang, J., Li, Y., & Fan, S. (2012). Crystal orientation tuning of LiFePO4 nanoplates for high rate lithium battery cathode materials. Nano Letters, 12(11), 5632–5636. https://doi.org/10.1021/nl3027839.

DOI: 10.1021/nl3027839

Google Scholar

[10] Simon, P., & Gogotsi, Y. (2013). Capacitive Energy Storage in Nanostructured Carbon-Electrolyte Systems. Accounts of Chemical Research, 46(5), 1094–1103. https://doi.org/10.1021/ar200306b.

DOI: 10.1021/ar200306b

Google Scholar

[11] González, A., Goikolea, E., Barrena, J. A., & Mysyk, R. (2016). Review on supercapacitors: Technologies and materials. Renewable and Sustainable Energy Reviews, 58, 1189–1206. https://doi.org/10.1016/j.rser.2015.12.249.

DOI: 10.1016/j.rser.2015.12.249

Google Scholar

[12] Deng, L., Wang, J., Zhu, G., Kang, L., Hao, Z., Lei, Z., Yang, Z., & Liu, Z. H. (2014). RuO2/graphene hybrid material for high performance electrochemical capacitor. Journal of Power Sources, 248, 407–415. https://doi.org/10.1016/j.jpowsour.2013.09.081.

DOI: 10.1016/j.jpowsour.2013.09.081

Google Scholar

[13] Largeot, C., Portet, C., Chmiola, J., Taberna, P. L., Gogotsi, Y., & Simon, P. (2008). Relation between the ion size and pore size for an electric double-layer capacitor. Journal of the American Chemical Society, 130(9), 2730–2731. https://doi.org/10.1021/ja7106178.

DOI: 10.1021/ja7106178

Google Scholar

[14] Lukatskaya, M. R., Kota, S., Lin, Z., Zhao, M. Q., Shpigel, N., Levi, M. D., Halim, J., Taberna, P. L., Barsoum, M. W., Simon, P., & Gogotsi, Y. (2017). Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nature Energy, 6(July), 1–6. https://doi.org/10.1038/nenergy.2017.105.

DOI: 10.1038/nenergy.2017.105

Google Scholar

[15] Liu, C., Yu, Z., Neff, D., Zhamu, A., & Jang, B. Z. (2010). Graphene-based supercapacitor with an ultrahigh energy density. Nano Letters, 10(12), 4863–4868. https://doi.org/10.1021/nl102661q.

DOI: 10.1021/nl102661q

Google Scholar

[16] Niu, J., Conway, B. E., & Pell, W. G. (2004). Comparative studies of self-discharge by potential decay and float-current measurements at C double-layer capacitor and battery electrodes. Journal of Power Sources, 135(1–2), 332–343. https://doi.org/10.1016/j.jpowsour.2004.03.068.

DOI: 10.1016/j.jpowsour.2004.03.068

Google Scholar

[17] Wang, Z., Xu, Z., Huang, H., Chu, X., Xie, Y., Xiong, D., Yan, C., Zhao, H., Zhang, H., & Yang, W. (2020). Unraveling and regulating self-discharge behavior of Ti3C2Tx MXene-based supercapacitors. ACS Nano, 14(4), 4916–4924. https://doi.org/10.1021/acsnano.0c01056.

DOI: 10.1021/acsnano.0c01056

Google Scholar

[18] Wang, Z., Chu, X., Xu, Z., Su, H., Yan, C., Liu, F., Gu, B., Huang, H., Xiong, D., Zhang, H., Deng, W., Zhang, H., & Yang, W. (2019). Extremely low self-discharge solid-state supercapacitors: Via the confinement effect of ion transfer. Journal of Materials Chemistry A, 7(14), 8633–8640. https://doi.org/10.1039/c9ta01028a.

DOI: 10.1039/c9ta01028a

Google Scholar

[19] Homola, T., Pospíšil, J., Krumpolec, R., Souček, P., Dzik, P., Weiter, M., & Černák, M. (2018). Atmospheric Dry Hydrogen Plasma Reduction of Inkjet-Printed Flexible Graphene Oxide Electrodes. ChemSusChem, 11(5), 941–947. https://doi.org/10.1002/cssc.201702139.

DOI: 10.1002/cssc.201702139

Google Scholar

[20] Avireddy, H., Byles, B. W., Pinto, D., Delgado Galindo, J. M., Biendicho, J. J., Wang, X., Flox, C., Crosnier, O., Brousse, T., Pomerantseva, E., Morante, J. R., & Gogotsi, Y. (2019). Stable high-voltage aqueous pseudocapacitive energy storage device with slow self-discharge. Nano Energy, 64(August), 103961. https://doi.org/10.1016/j.nanoen.2019.103961.

DOI: 10.1016/j.nanoen.2019.103961

Google Scholar

[21] Simon P, Burke A. Nanostructured carbons: double-layer capacitance and more. Electrochem. Soc. Interface 2008; 17(1): 38–44. URL /http://www.electrochem.org/dl/interface/spr/spr08/spr08_p38-43.pdfS.

DOI: 10.1149/2.f05081if

Google Scholar

[22] Jurewicz K, Vix-Guterl C. Capacitance properties of ordered porous carbonmaterials prepared by a templating procedure. J Phys Chem Solids 2004; 65: 287–93. http://dx.doi.org/10.1016/j.jpcs.2003.10.024 URL 〈http://www.sciencedirect.com/science/article/pii/ S0022369703003858〉.

DOI: 10.1016/j.jpcs.2003.10.024

Google Scholar

[23] Kumar, V. B., Borenstein, A., Markovsky, B., Aurbach, D., Gedanken, A., Talianker, M., & Porat, Z. (2016). Activated Carbon Modified with Carbon Nanodots as Novel Electrode Material for Supercapacitors. Journal of Physical Chemistry C, 120(25), 13406–13413. https://doi.org/10.1021/acs.jpcc.6b04045.

DOI: 10.1021/acs.jpcc.6b04045

Google Scholar

[24] Guo, F. M., Xu, R. Q., Cui, X., Zang, X. B., Zhang, L., Chen, Q., Wang, K. L., & Wei, J. Q. (2015). Highly flexible, tailorable and all-solid-state supercapacitors from carbon nanotube-MnOx composite films. RSC Advances, 5(108), 89188–89194. https://doi.org/10.1039/c5ra16771j.

DOI: 10.1039/c5ra16771j

Google Scholar

[25] Weinstein, L. & Dash, R. Supercapacitor carbons. Mater. Today 16, 356–357 (2013).

Google Scholar

[26] Chun, S. E., Evanko, B., Wang, X., Vonlanthen, D., Ji, X., Stucky, G. D., & Boettcher, S. W. (2015). Design of aqueous redox-enhanced electrochemical capacitors with high specific energies and slow self-discharge. Nature Communications, 6. https://doi.org/10.1038/ncomms8818.

DOI: 10.1038/ncomms8818

Google Scholar

[27] Gongadze, E., van Rienen, U., & Iglič, A. (2011). Generalized stern models of the electric double layer considering the spatial variation of permittvity and finite size of ions in saturation regime. Cellular and Molecular Biology Letters, 16(4), 576–594. https://doi.org/10.2478/s11658-011-0024-x.

DOI: 10.2478/s11658-011-0024-x

Google Scholar

[28] Huang, Y., Liu, X., Li, S., & Yan, T. (2015). Development of mean-field electrical double layer theory.

Google Scholar

[29] Augustyn, V., Simon, P., & Dunn, B. (2014). Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy and Environmental Science, 7(5), 1597–1614. https://doi.org/10.1039/c3ee44164d.

DOI: 10.1039/c3ee44164d

Google Scholar

[30] Béguin, F. et al. (2014) Carbons and electrolytes for advanced supercapacitors,, Advanced Materials, 26(14), p.2219–2251.

DOI: 10.1002/adma.201304137

Google Scholar

[31] Zhu, Y. et al. (2011) Carbon-Based Supercapacitors,, 332(June), p.1537–1542.

Google Scholar

[32] Gu, W. et al. (2013) Sulfur-containing activated carbons with greatly reduced content of bottle neck pores for double-layer capacitors: A case study for pseudocapacitance detection,, Energy and Environmental Science, 6(8), p.2465–2476.

DOI: 10.1039/c3ee41182f

Google Scholar

[33] Hwang, J. Y. et al. (2017) Next-Generation Activated Carbon Supercapacitors: A Simple Step in Electrode Processing Leads to Remarkable Gains in Energy Density,, Advanced Functional Materials, 27(15).

DOI: 10.1002/adfm.201605745

Google Scholar

[34] Paleo, A. J. et al. (2018) Supercapacitors based on AC/MnO2 deposited onto dip-coated carbon nanofiber cotton fabric electrodes,, Energy Storage Materials, 12, p.204–215.

DOI: 10.1016/j.ensm.2017.12.013

Google Scholar