Effect of Carbon Source on Synthesis of Carbon Coated Lithium Titanate

Article Preview

Abstract:

Carbon coated lithium titanate (Li4Ti5O12/C) was obtained by a facile solid state approach in inert Ar atmosphere. The composition, morphology, residual carbon content and Ti valence of the samples were systematically investigated. The carbon content of Li4Ti5O12/C should be optimized, since excess carbon in the composite leads to the reduction of Ti (IV) to form Ti (III), which results in large irreversible capacity of Li4Ti5O12/C. With an optimal carbon content of 0.68wt%, the Li4Ti5O12/C sample shows high rate capabilities and good cycling ability, delivering discharge capacities of 160.8 mAh/g at 5C. The superior high rate properties are ascribed to the specific nanostructures, which enables fast electronic and ionic transport by introducing carbon coating and decreasing the particle size of lithium titanate.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

160-165

Citation:

Online since:

January 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Sato, M. Noguchi, A. Demachi, N. Oki, M. Endo, Science 264 (1994) 556-558.

Google Scholar

[2] J.M. Tarascon, M. Armand, Nature 414 (2001) 359-367.

Google Scholar

[3] H. Wu, Y. Huang, D. Jia, Z. Guo, M. Miao, J. Nanopart. Res. 14 (2012) 713.

Google Scholar

[4] T. Ohzuku, A. Ueda, N. Yamamoto, Y. Iwakoshi, J. Power Sources 54 (1995) 99-102.

Google Scholar

[5] K. Zaghib, M. Simoneau, M. Armand, M. Gauthier, J. Power Sources 81–82 (1999) 300-305.

DOI: 10.1016/s0378-7753(99)00209-8

Google Scholar

[6] SL. Chou, JZ. Wang, HK. Liu, SX. Dou, J. Phys. Chem. C 115 (2011) 16220-16227.

Google Scholar

[7] A.S. Prakash, P. Manikandan, K. Ramesha, M. Sathiya, J.M. Tarascon, A.K. Shukla, Chem. Mater. 22 (2010) 2857-2863.

Google Scholar

[8] S.C. Lee, S.M. Lee, J.W. Lee, J.B. Lee, S.M. Lee, S.S. Han, H.C. Lee, H.J. Kim, J. Phys. Chem. C 113 (2009) 18420-18423.

DOI: 10.1021/jp905114c

Google Scholar

[9] S. H. Yu, A. Pucci, T. Herntrich, M. G. Willinger, S.-H. Baek, Y.-E. Sung, N. Pinna, J. Mater. Chem. 21 (2011) 806-810.

DOI: 10.1039/c0jm03064c

Google Scholar

[10] D. K. Lee, H. W. Shim, J.S. An, C.M. Cho, I.-S. Cho, K.S. Hong, D.-W. Kim, Nanoscale Res. Lett. 5 (2010) 1585.

Google Scholar

[11] GN. Zhu, HJ. Liu, JH. Zhuang, CX. Wang, YG. Wang, YY. Xia, Energy Environ. Sci. 4 (2011) 4016-4022.

Google Scholar

[12] M. S. Song, A. Benayad, Y.-M. Choi, K. S. Park, Chem. Commun. 48 (2012) 516-518.

Google Scholar

[13] P. Liu, Z. Zhang, J. Li, Y. Lai, J. Cent. South Univ. T. 17 (2010) 1207-1210.

Google Scholar

[14] H. Li, H. Zhou, Chem. Commun. 48 (2012) 1201-1217.

Google Scholar

[15] L. Shen, C. Yuan, H. Luo, X. Zhang, K. Xu, F. Zhang, J. Mater. Chem. 21 (2011) 761-767.

Google Scholar

[16] N. Jayaprakash, S.S. Moganty, X.W. Lou, L.A. Archer, Appl. Nanosci. 1 (2011) 7-11.

Google Scholar

[17] G.J. Wang, J. Gao, L.J. Fu, N.H. Zhao, Y.P. Wu, T. Takamura, J. Power Sources 174 (2007) 1109-1112.

Google Scholar

[18] Y. Wang, H. Liu, K. Wang, H. Eiji, Y. Wang, H. Zhou, J. Mater. Chem. 19 (2009) 6789-6795.

Google Scholar

[19] Z. Ding, L. Zhao, L. Suo, Y. Jiao, S. Meng, Y.-S. Hu, Z. Wang, L. Chen, Phys. Chem. Chem. Phys. 13 (2011) 15127-15133.

Google Scholar

[20] M.V. Koudriachova, Chem. Phys. Lett. 458 (2008) 108-112.

Google Scholar