Optimization of the Pozzolanic Activity of Coal Gangue Waste for Eco-Efficient Cementitious Materials

Article Preview

Abstract:

Massive coal gangue waste delivers environmental disasters in China. Finding an effective, efficient, practical and value-added approach for large-scale disposal of coal gangue waste is very urgent. In this study, thermal treatment approach was conducted on coal gangue waster with the goal to improve its pozzolanic activity so that considerable replacement of Portland cement can be realized. XRD analysis, IR analysis as well as the evaluation on mechanical properties of mortar specimen were carried out to optimize thermal treatment program. The results indicate that coal gangue waste can be efficiently treated at 850°C in less than 30min to obtain pozzolanic activity of 108% at 7 days and 124% at 28 days. And an industrial product also shows similar improvement in pozzolanic activity to the lab results, and indicates the potential for producing eco-efficient cementitious materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

303-313

Citation:

Online since:

January 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V.I. Babushkin, G.M. Matveyev, O.P. Mchedlov-Petrossyan, Thermo-dynamics of Silicates, ISBN 3-540-12750-X.

DOI: 10.1007/978-3-642-69320-5

Google Scholar

[2] Caldarone M.A., Gruber K.A., Burg R.G., a High-Reactivity Metakaolin: A New Generation Mineral Admixture, Concrete International. Pages 37-40 (November 1994).

Google Scholar

[3] Frias M., Sanchez de Rojas M.J.: Mater. de Constr. 50, 57 (2000).

Google Scholar

[4] SchvarzmanA., Kovler K., Grader G.S., Shter D.E., The effect of dehydroxylation and amorphization degree on pozzolanic activity of kaolinite, Cem. Concr. Res. Volume 33, Issue 3 Pages 299-462 (March 2003).

DOI: 10.1016/s0008-8846(02)00975-4

Google Scholar

[5] Sabir B.B., Wild S., Bai J., Metakaolin and calcined clays as pozzolans for concrete: a review, Cem. Concr. Compos. 23, 441 (2001).

DOI: 10.1016/s0958-9465(00)00092-5

Google Scholar

[6] Hassan A.A.A., Lachemi M., Hossain K.M.A., Effect of metakaolin and silica fume on the durability of self-consolidating concrete, Cem. Concr. Compos. 34, 801 (2012).

DOI: 10.1016/j.cemconcomp.2012.02.013

Google Scholar

[7] Aras A., Albayrak M., Arikan M., Sobolev K., Evaluation of selected kaolins as raw materials for the Turkish cement and concrete industry, Clay Miner. 42, 233 (2007).

DOI: 10.1180/claymin.2007.042.2.08

Google Scholar

[8] Kwon K.O., Lee M.G., Kong K.R., Kong H.C.: Resour. Proc. 55, 115 (2008).

Google Scholar

[9] John Coates, Interpretation of Infrared Spectra: A Practical Approach, Encyclopedia of Analytical Chemistry, R.A. Meyers (Ed.), p.10815–10837, Ó John Wiley & Sons Ltd, Chichester, (2000).

Google Scholar

[10] M. F. Zawrah, R. A. Gado and R. M. Khattab, Optimization of Slag Content and Properties Improvement of Metakaolin-slag Geopolymer Mixes,.

DOI: 10.2174/1874088x01812010040

Google Scholar

[11] Kenneth J D Mackenzie etal. The effect of reaction atmosphere on the early stage carbon-thermal reduction of kaolinite: an XRD, 29Si and 27Al MAS NMR study, Journal of Materials Science April 1994,.

DOI: 10.1007/bf00349958

Google Scholar

[12] Papoulis, D. (2007). 29Si and 27Al CPMAS NMR qualitative and quantitative analysis of kaolinite and dickite in KOS ISLAND KAOLINS, GREECE. Bulletin of the Geological Society of Greece, 40(2), 936-946.

DOI: 10.12681/bgsg.16776

Google Scholar

[13] Ralph Davidovits, Christine Pelegris, Joseph Davidovits, (2019), Standardized Method in TestingCommercial Metakaolins for Geopolymer Formulations, Technical Paper #26 MK-testing, Geopolymer Institute Library, www.geopolymer.org.

Google Scholar

[14] R. Grim, Clay mineralogy, McGraw-Hill, New York (1968).

Google Scholar

[15] J. A. Kostuch, V. Walters and T. R. Jones, in: Concrete 2000:Economic and Durable Construction through Excellence, Ed. R. K. Dhir, M. R. Jones, E&FN SPON, London 1996, p.1799.

Google Scholar

[16] P. Stroeven and V. D. Dau, in: Modern Concrete Materials: Binders, Additions and Admixtures, Ed. R. K. Dhir, T. D. Dyer, Thomas Telford, London 1999, p.139.

DOI: 10.1680/mcmbaaa.28227

Google Scholar

[17] E. Badogiannis, S. Tsivilis, V. Papadakis, E. Chaniotakis, in: R. K. Dhir, P. C. Hewlett, L. J. Cetenyi, Innovations and Developments in Concrete Materials and Construction, Dundee, UK 2002, p.81.

Google Scholar

[18] E. Badogiannis, G. Kakali and S. Tsivilis, Metakaolin as supplementary cementitious material, Optimization of kaolin to metakaolin conversion, Journal of Thermal Analysis and Calorimetry, Vol. 81 (2005) 457–462.

DOI: 10.1007/s10973-005-0806-3

Google Scholar

[19] Alaa M. Rashad, Metakaolin as cementitious material: History, scours, production and composition–Acomprehensive overview, Construction and Building Materials, 41(2013) 303-318.

DOI: 10.1016/j.conbuildmat.2012.12.001

Google Scholar

[20] Sanjay N. Patil, Anil K. Gupta, Subhash S. Deshpande, Metakaolin- Pozzolanic Material For Cement in High Strength Concrete, IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE)ISSN: 2278-1684, PP: 46-49.

DOI: 10.9790/1684-0610109

Google Scholar

[21] Gebremariam, A. T., Bøjer, M., Adelsward, A., Yin, C., & Rosendahl, L. (2014). Simulation of flash dehydroxylation of clay particle using gPROMS: A move towards green concrete. Energy Procedia, 61, 556-559.

DOI: 10.1016/j.egypro.2014.11.1169

Google Scholar

[22] ĽUDOVÍT KRAJČI, IVAN JANOTKA, FRANCISCA PUERTAS, MARTA PALACIOS, MARTA KULIFFAYOVÁ, Long-term properties of cement composites with various Metakaolinite content, Ceramics – Silikáty 57 (1) 74-81 (2013).

Google Scholar

[23] Gebremariam, A. T., Yin, C., & Rosendahl, L. (2016). Flash calcination of kaolinite rich clay and impact of process conditions on the quality of the calcines: A way to reduce CO2 footprint from cement industry. Applied Energy, 162, 1218-1224.

DOI: 10.1016/j.apenergy.2015.04.127

Google Scholar

[24] S S Potgieter, J H Potgieter, P Napo, The effect of metakaolin additions on strength development in cement mortars, Challenges of Concrete Construction: Volume 5, Sustainable Concrete Construction, 1 Jan 2002 (263–269).

DOI: 10.1680/scc.31777.0027

Google Scholar

[25] E Badogiannis, S Tsivilis Prof, V G Papadakis Dr, E Chaniotakis, The effect of metakaolin on concrete properties, Innovations and Developments in Concrete Materials and Construction, 1 Jan 2002 (81–89).

Google Scholar

[26] Grizelda du Toit, Elsabé P. Kearsley, James M. Mc Donald, Richard A. Kruger, Elizabet M. van der Merwe, Chemical and mechanical activation of hybrid fly ash cement, Advances in Cement Research, Volume 30, Issue 9, 1 Oct 2018 (399–412).

DOI: 10.1680/jadcr.17.00156

Google Scholar