[1]
Cui Y. 2004 Computer layout and Application (Beijing: Machinery Industry Press).
Google Scholar
[2]
Ji J Lu Y. Cha J. 2012An exact algorithm for large-scale unconstrained three staged cutting problems with same-size block requirement International Journal Information and Management Sciencesvol 23 p.59–78.
Google Scholar
[3]
Dolatabadi MLodi AMonaci M 2012 Exact algorithms for the two-dimensional guillotine knapsack Computers & Operations Research vol 39 p.48–53.
DOI: 10.1016/j.cor.2010.12.018
Google Scholar
[4]
Cui Y. SongX. 2006 Generating optimal two-section cutting patterns for rectangular blanksComputers & operations researchvol39 p.1505–1520.
DOI: 10.1016/j.cor.2004.09.022
Google Scholar
[5]
Francois C Antoine J AzizM2011 A new graph-theoretical model for the guillotine-cutting problem INFORMS Journal on Computing.
DOI: 10.1287/ijoc.1110.0478
Google Scholar
[6]
Gilmore P C, Gomory, R.E. A linear Programming Approach to the Cutting Stock Problem [J]. Operations Research 1961, 9: 849-859.
DOI: 10.1287/opre.9.6.849
Google Scholar
[7]
Gilmore P.C, Gomory, R.E. A linear Programming Approach to the Cutting Stock Problem---Part II [J]. Operations Research 1963, 11: 863-888.
DOI: 10.1287/opre.11.6.863
Google Scholar
[8]
Gilmore P.C, Gomory, R.E. Multistage Cutting Stock Problem of Two and More Dimensions [J]. Operations Research 1965, 13: 94-120.
DOI: 10.1287/opre.13.1.94
Google Scholar
[9]
Gilmore P.C, Gomory, R.E. The Theory and Computation of Knapsack Functions [J]. Operations Research 196 6, 14: 1045-1074.
DOI: 10.1287/opre.14.6.1045
Google Scholar
[10]
Beasley J.E. An exact two-dimensional non-guillotine cutting tree search procedure [J]. Operations Research, 1985, 33:4964.
DOI: 10.1287/opre.33.1.49
Google Scholar
[11]
Farley A.A. Mathematical programming models for cutting-stock problems in the clothing industry[J]. Journal of the Operational Research Society, 1988, 39(1):4153.
DOI: 10.2307/2581997
Google Scholar