Effect of Two-Stage Aging on Microstructure and Properties of Al-Mg-Si Alloys

Article Preview

Abstract:

The effects of two-stage aging on the microstructures, tensile properties and intergranular corrosion (IGC) sensitivity of Al-Mg-Si alloys were studied by tensile testing and IGC experiments and transmission electron microscope (TEM). The results show that the two-stage aging (180°C, 2h+160°C, 120h) can reduce the IGC sensitivity without decrease the tensile properties. The grain is distributed with high-density β′′ phases, and the grain boundary phases are spherical and intermittently distributed. The formation of the microstructure characteristic is due to the lower re-aging temperature, which results in a decline differences in the diffusion rate between the matrix and grain boundaries. As a result, the pre-precipitated phase can maintain a better strengthening effects due to the slower growth rate. The pre-precipitated phase of the grain boundary presents a spherical and intermittent distribution due to the fast coarsening speed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

51-55

Citation:

Online since:

January 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Myhr O R, S.J. Andersen, Modeling of the age hardenign behavior of Al-Mg- Si ALLOYS,Acta Mater, (2001) 65-75.

Google Scholar

[2] Brito C, Vida T, Freitas E. Cellular/dendritic arrays and intermetallic phases affecting corrosion and mechanical resistances of an Al-Mg-Si alloy[J]. 2016, 673(15): 220–230.

DOI: 10.1016/j.jallcom.2016.02.161

Google Scholar

[3] Zhang C, Du Y, Liu S. Thermal conductivity of Al-Cu-Mg-Si alloys : experimental measurement and calphad modeling[J]. Thermochim. Acta, 2016, 635(10): 8–16.

DOI: 10.1016/j.tca.2016.04.019

Google Scholar

[4] Prusov E, Deev V, Shunqi M. Proceedings thermodynamic assessment of the Al-Mg-Si-Ti phase diagram for metal matrix composites design[J]. Mater. Today Proc., 2019, doi.org/10.1016/j.matpr.2019.07.061.

DOI: 10.1016/j.matpr.2019.07.061

Google Scholar

[5] Du Q, Tang K, Marioara C D. Modeling over-ageing in Al-Mg-Si alloys by a multi-phase CALPHAD-coupled Kampmann-Wagner numerical model[J]. Acta Mater., 2017, 122(1): 178–186.

DOI: 10.1016/j.actamat.2016.09.052

Google Scholar

[6] Chrominski W, Lewandowska M. Precipitation phenomena in ultrafine grained Al-Mg-Si alloy with heterogeneous microstructure[J]. Acta Mater., 2016, 103(15): 547–557.

DOI: 10.1016/j.actamat.2015.10.030

Google Scholar

[7] Lai Y X, Jiang B C, Liu C H. Low-alloy-correlated reversal of the precipitation sequence in Al-Mg- Si alloys[J]. J. Alloy Compd., 2017, 701(15): 94–98.

DOI: 10.1016/j.jallcom.2017.01.095

Google Scholar

[8] Ding L, Jia Z, Nie J. The structural and compositional evolution of precipitates in Al-Mg-Si-Cu alloy[J]. Acta Mater., 2018, 145(15): 437–450.

DOI: 10.1016/j.actamat.2017.12.036

Google Scholar

[9] Fan X, He Z, Zhou W. Formability and strengthening mechanism of solution treated Al-Mg-Si alloy sheet under hot stamping conditions[J]. J. Mater. Process. Tech., 2016, 228(2): 179–185.

DOI: 10.1016/j.jmatprotec.2015.10.016

Google Scholar

[10] Chrominski W, Wenner S, Marioara C D. Strengthening mechanisms in ultra fine grained Al-Mg-Si alloy processed by hydrostatic extrusion-influence of ageing temperature[J]. Mater. Sci. Eng. A, 2016, 669(4): 447–458.

DOI: 10.1016/j.msea.2016.05.109

Google Scholar

[11] Chen Y, Gao N, Sha G. Microstructural evolution, strengthening and thermal stability of an ultra fine-grained Al-Cu-Mg alloy[J]. Acta Mater., 2016, 109(1): 202–212.

DOI: 10.1016/j.actamat.2016.02.050

Google Scholar

[12] Elaty A A, Xu Y, Guo X. Strengthening mechanisms, deformation behavior, and anisotropic mechanical properties of Al-Li alloys : a review[J]. J. Adv. Res., 2018, 10(5): 49–67.

Google Scholar

[13] Hadadzadeh A, Baxter C, Shalchi B. Strengthening mechanisms in direct metal laser sintered AlSi10Mg : Comparison between virgin and recycled powders[J]. Addit. Manuf., 2018, 23(10): 108–120.

DOI: 10.1016/j.addma.2018.07.014

Google Scholar

[14] Milkereit B, Wanderka N, Schick C. Continuous cooling precipitation diagrams of Al-Mg-Si alloys[J]. Mater. Sci. Eng. A, 2012, 550(30): 87–96.

DOI: 10.1016/j.msea.2012.04.033

Google Scholar

[15] Cuniberti A, Tolley A, Riglos M V C. Influence of natural aging on the precipitation hardening of an AlMgSi alloy[J]. Mater. Sci. Eng. A, 2010, 557(20): 5307–5311.

DOI: 10.1016/j.msea.2010.05.003

Google Scholar

[16] Pogatscher S, Antrekowitsch H, Leitner H. Mechanisms controlling the artificial aging of Al-Mg-Si Alloys[J]. Acta Mater., 2011, 59(9): 3352–3363.

DOI: 10.1016/j.actamat.2011.02.010

Google Scholar