[1]
Myhr O R, S.J. Andersen, Modeling of the age hardenign behavior of Al-Mg- Si ALLOYS,Acta Mater, (2001) 65-75.
Google Scholar
[2]
Brito C, Vida T, Freitas E. Cellular/dendritic arrays and intermetallic phases affecting corrosion and mechanical resistances of an Al-Mg-Si alloy[J]. 2016, 673(15): 220–230.
DOI: 10.1016/j.jallcom.2016.02.161
Google Scholar
[3]
Zhang C, Du Y, Liu S. Thermal conductivity of Al-Cu-Mg-Si alloys : experimental measurement and calphad modeling[J]. Thermochim. Acta, 2016, 635(10): 8–16.
DOI: 10.1016/j.tca.2016.04.019
Google Scholar
[4]
Prusov E, Deev V, Shunqi M. Proceedings thermodynamic assessment of the Al-Mg-Si-Ti phase diagram for metal matrix composites design[J]. Mater. Today Proc., 2019, doi.org/10.1016/j.matpr.2019.07.061.
DOI: 10.1016/j.matpr.2019.07.061
Google Scholar
[5]
Du Q, Tang K, Marioara C D. Modeling over-ageing in Al-Mg-Si alloys by a multi-phase CALPHAD-coupled Kampmann-Wagner numerical model[J]. Acta Mater., 2017, 122(1): 178–186.
DOI: 10.1016/j.actamat.2016.09.052
Google Scholar
[6]
Chrominski W, Lewandowska M. Precipitation phenomena in ultrafine grained Al-Mg-Si alloy with heterogeneous microstructure[J]. Acta Mater., 2016, 103(15): 547–557.
DOI: 10.1016/j.actamat.2015.10.030
Google Scholar
[7]
Lai Y X, Jiang B C, Liu C H. Low-alloy-correlated reversal of the precipitation sequence in Al-Mg- Si alloys[J]. J. Alloy Compd., 2017, 701(15): 94–98.
DOI: 10.1016/j.jallcom.2017.01.095
Google Scholar
[8]
Ding L, Jia Z, Nie J. The structural and compositional evolution of precipitates in Al-Mg-Si-Cu alloy[J]. Acta Mater., 2018, 145(15): 437–450.
DOI: 10.1016/j.actamat.2017.12.036
Google Scholar
[9]
Fan X, He Z, Zhou W. Formability and strengthening mechanism of solution treated Al-Mg-Si alloy sheet under hot stamping conditions[J]. J. Mater. Process. Tech., 2016, 228(2): 179–185.
DOI: 10.1016/j.jmatprotec.2015.10.016
Google Scholar
[10]
Chrominski W, Wenner S, Marioara C D. Strengthening mechanisms in ultra fine grained Al-Mg-Si alloy processed by hydrostatic extrusion-influence of ageing temperature[J]. Mater. Sci. Eng. A, 2016, 669(4): 447–458.
DOI: 10.1016/j.msea.2016.05.109
Google Scholar
[11]
Chen Y, Gao N, Sha G. Microstructural evolution, strengthening and thermal stability of an ultra fine-grained Al-Cu-Mg alloy[J]. Acta Mater., 2016, 109(1): 202–212.
DOI: 10.1016/j.actamat.2016.02.050
Google Scholar
[12]
Elaty A A, Xu Y, Guo X. Strengthening mechanisms, deformation behavior, and anisotropic mechanical properties of Al-Li alloys : a review[J]. J. Adv. Res., 2018, 10(5): 49–67.
Google Scholar
[13]
Hadadzadeh A, Baxter C, Shalchi B. Strengthening mechanisms in direct metal laser sintered AlSi10Mg : Comparison between virgin and recycled powders[J]. Addit. Manuf., 2018, 23(10): 108–120.
DOI: 10.1016/j.addma.2018.07.014
Google Scholar
[14]
Milkereit B, Wanderka N, Schick C. Continuous cooling precipitation diagrams of Al-Mg-Si alloys[J]. Mater. Sci. Eng. A, 2012, 550(30): 87–96.
DOI: 10.1016/j.msea.2012.04.033
Google Scholar
[15]
Cuniberti A, Tolley A, Riglos M V C. Influence of natural aging on the precipitation hardening of an AlMgSi alloy[J]. Mater. Sci. Eng. A, 2010, 557(20): 5307–5311.
DOI: 10.1016/j.msea.2010.05.003
Google Scholar
[16]
Pogatscher S, Antrekowitsch H, Leitner H. Mechanisms controlling the artificial aging of Al-Mg-Si Alloys[J]. Acta Mater., 2011, 59(9): 3352–3363.
DOI: 10.1016/j.actamat.2011.02.010
Google Scholar