[1]
Yang M, Yan D, Yuan F, et al. Dynamically reinforced heterogeneous grain structure prolongs ductility in a medium-entropy alloy with gigapascal yield strength. 2018, Proceedings of the National Academy of sciences, 115(28):201807817.
DOI: 10.1073/pnas.1807817115
Google Scholar
[2]
Wang C, Cao W, Shi J, et al. Deformation microstructures and strengthening mechanisms of an ultrafine grained duplex medium-Mn steel. 2013, Materials Science & Engineering A, 562:89-95.
DOI: 10.1016/j.msea.2012.11.044
Google Scholar
[3]
Shi J, Sun X, Wang M, et al. Enhanced work-hardening behavior and mechanical properties in ultrafine-grained steels with large-fractioned metastable austenite. Scripta Materialia, 2010, 63(8): 815-818.
DOI: 10.1016/j.scriptamat.2010.06.023
Google Scholar
[4]
Luo H, Shi J, Wang C, et al. Experimental and numerical analysis on formation of stable austenite during the intercritical annealing of 5Mn steel. 2011, Acta Materialia, 59(10):4002-4014.
DOI: 10.1016/j.actamat.2011.03.025
Google Scholar
[5]
Liu H, Lu X, Jin X, et al. Enhanced mechanical properties of a hot stamped advanced high-strength steel treated by quenching and partitioning process. 2011, Scripta Materialia, 64(8):749-752.
DOI: 10.1016/j.scriptamat.2010.12.037
Google Scholar
[6]
Calcagnotto M, Adachi Y, Ponge D, et al. Deformation and fracture mechanisms in fine- and ultrafine-grained ferrite/martensite dual-phase steels and the effect of aging. 2011, Acta Materialia, 59(2):658-670.
DOI: 10.1016/j.actamat.2010.10.002
Google Scholar
[7]
BB He, B Hu, H W Yen, GJ Cheng, etal, High dislocation density-induced larger ductility in deformed and partitioned steels. Scienc, 2017, 357(6355):1029-1032.
DOI: 10.1126/science.aan0177
Google Scholar
[8]
X. Wang, L. Wang, M. Huang, Kinematic and thermal characteristics of Lüders and Portevin-Le Châtelier bands in a mediumMn transformation-induced plasticity steel. 2017, Acta Mater. 124, 17–29.
DOI: 10.1016/j.actamat.2016.10.069
Google Scholar
[9]
Zhang M D, Hu J, Cao W Q, et al. Microstructure and mechanical propertiesof high strength and high toughness micro-laminated dual phase steels. 2014, Mater. Sci. Eng. A, 618: 168-175.
DOI: 10.1016/j.msea.2014.08.073
Google Scholar
[10]
Zhang M D, Hu J, Cao W Q, et al. Micro-laminated dual phase steel presenting with high strength and ultrahigh toughness, 2015, Mater. Sci. Technol., 31: 1349-1354.
DOI: 10.1179/1743284714y.0000000699
Google Scholar
[11]
Zhang M D, Cao W Q, Dong H, et al. Element partitioning effect on microstructure and mechanical property of the micro-laminated Fe–Mn–Al–C dual phase steel. 2016, Mater. Sci. Eng. A, 654: 193-202.
DOI: 10.1016/j.msea.2015.12.029
Google Scholar
[12]
Yoshida S, Bhattacharjee T, Bai Y, Tsuji N. Friction stress and Hall-Petchrelationshipin CoCrNiequi-atomic medium entropy alloy processed by severe plastic deformation and subsequent annealing. 2017, Scr Mater., 134:33–36.
DOI: 10.1016/j.scriptamat.2017.02.042
Google Scholar
[13]
Valiev R Z. Structure and deformation behaviour of Armco iron subjected to severe plastic deformation. 1996, Acta Materialia, 44(12):4705-4712.
DOI: 10.1016/s1359-6454(96)00156-5
Google Scholar
[14]
Wen X.L. EBSD Study of the Effect of Hot Deformation on Low Carbon Bainitic Structure, 2020, Materials Science Forum.993: 513-519.
DOI: 10.4028/www.scientific.net/msf.993.513
Google Scholar
[15]
Tang X.F, Shi S Q, Fu M.W. Interactive effect of grain size and crystal structure on deformation behavior in progressive micro-scaled deformation of metallic materials.2019, International Journal of Machine Tools and Manufacture, 148:103473.
DOI: 10.1016/j.ijmachtools.2019.103473
Google Scholar
[16]
Yan, Lin, Jie, et al. A grain-size-dependent structure evolution in gradient-structured(GS) Ni under tension. 2020, Nano Materials Science, 2(01):42-52.
DOI: 10.1016/j.nanoms.2019.12.004
Google Scholar
[17]
Oliver W C, Pharr G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments.1992, Journal of Materials Research, 7(06):1564-1583.
DOI: 10.1557/jmr.1992.1564
Google Scholar
[18]
Zhang P, Li S X, Zhang Z F. General relationship between strength and hardness.2011, Materials Science & Engineering, 529C: pp.62-73.
Google Scholar
[19]
Zhu Y T, Lowe T C. Observations and issues on mechanisms of grain refinement during ECAP process.2000, Materials Science and Engineering: A, 291(1-2):46-53.
DOI: 10.1016/s0921-5093(00)00978-3
Google Scholar
[20]
Wei R, Shang C J, Wu K M. Grain refinement in the coarse-grained region of the heat-affected zone in low-carbon high-strength microalloyed steels.2010, International Journal of Minerals Metallurgy & Materials, 6:737-741.
DOI: 10.1007/s12613-010-0382-9
Google Scholar
[21]
Hajime, YAMAMOTO, Hiroki, et al. Effects of Microstructural Modification by Friction Stir Processing on Fracture Toughness of Low-carbon Steel Welds. 2019, Journal of Smart Processing, 8(1):29-35.
DOI: 10.7791/jspmee.8.29
Google Scholar
[22]
Morito S, Yoshida H, Maki T, et al. Effect of block size on the strength of lath martensite in low carbon steels [J].2006, Materials Science & Engineering A, 438(1):237-240.
DOI: 10.1016/j.msea.2005.12.048
Google Scholar
[23]
Nakajima M, Komazaki S I, Kohno Y, et al. Contributions of Matrix and Block Boundary Strength to Hardness Change of Reduced Activation Ferritic Steel during Creep. 2008, Journal of the Japan Institute of Metals and Materials, 72(8): 599-603.
DOI: 10.2320/jinstmet.72.599
Google Scholar