[1]
Ahlatci H. Production and corrosion behaviours of the Al-12Si-X Mg alloys containing in situ Mg2Si particles[J]. J. Alloys Compd., 2010, 593(1): 122–126.
DOI: 10.1016/j.jallcom.2010.04.214
Google Scholar
[2]
Larsen M H, Walmsley J C, Lunder O, et al. Effect of excess silicon and small copper content on intergranular corrosion of 6000-series aluminum alloys[J]. J. Electrochem. Soc., 2010, 157(2): 61–68.
DOI: 10.1149/1.3261804
Google Scholar
[3]
Elmenshawy K, Elsayed A A, Elbedawy M E, et al. Effect of aging time at low aging temperatures on the corrosion of aluminum alloy 6061[J]. Corros. Sci., 2012, 54(6): 167–173.
DOI: 10.1016/j.corsci.2011.09.011
Google Scholar
[4]
Pechcanul M A, Pechcanul M I, Bartolopérez P, et al. The role of silicon alloying addition on the pitting corrosion resistance of an Al-12wt.% Si alloy[J]. Electrochim. Acta, 2014, 140(10): 258–265.
DOI: 10.1016/j.electacta.2014.05.034
Google Scholar
[5]
Vlach M, Čížek J, Smola B, et al. Heat treatment and age hardening of Al-Si-Mg-Mn commercial alloy with addition of Sc and Zr[J]. Mater. Charact., 2017, 129(2): 1–8.
DOI: 10.1016/j.matchar.2017.04.017
Google Scholar
[6]
Liu W, Li M, Luo Q, et al. Influence of alloyed magnesium on the microstructure and long-term corrosion behavior of hot-dip Al-Zn-Si coating in NaCl solution[J]. Corrs. Sci., 2016, 104(3): 217–226.
DOI: 10.1016/j.corsci.2015.12.014
Google Scholar
[7]
Zou Y, Liu Q, Jia Z, et al. The intergranular corrosion behavior of 6000-series alloys with different Mg/Si and Cu content[J]. Appl. Surf. Sci., 2017, 405(31): 489–496.
DOI: 10.1016/j.apsusc.2017.02.045
Google Scholar
[8]
Svenningsen G, Hurlen M. Effect of high temperature heat treatment on intergranular corrosion of AlMgSi(Cu) model alloy[J]. Corrs. Sci., 2006, 48(1): 258–272.
DOI: 10.1016/j.corsci.2004.12.003
Google Scholar
[9]
Ly R, Hartwig K T, Castaneda H, et al. Influence of dynamic recrystallization and shear banding on the localized corrosion of severely deformed Al-Mg-Si alloy[J]. Materialia, 2018, 4, 457–465.
DOI: 10.1016/j.mtla.2018.11.005
Google Scholar
[10]
Ortíz M R., Rodríguez M A, Carranza R M, et al. Oxyanions as inhibitors of chloride-induced crevice corrosion of Alloy [J]. Corrs. Sci., 2013, 68(5): 72–83.
DOI: 10.1016/j.corsci.2012.10.037
Google Scholar
[11]
Spear A D, Ingraffea A R. Effect of chemical milling on low-cycle fatigue behavior of an Al-Mg-Si alloy[J]. Corros. Sci., 2013, 68(5): 144–153.
DOI: 10.1016/j.corsci.2012.11.006
Google Scholar
[12]
Early M, Kelly D J. The consequences of the mechanical environment of peripheral arteries for nitinol stenting[J]. Med. Biol. Eng. Comput., 2011, 49(11): 1279–1288.
DOI: 10.1007/s11517-011-0815-2
Google Scholar
[13]
Marcus P, Maurice V, Strehblow H. Localized corrosion (pitting): a model of passivity breakdown including the role of the oxide layer nanostructure[J]. Corrs. Sci., 2008, 50(9): 2698–2704.
DOI: 10.1016/j.corsci.2008.06.047
Google Scholar
[14]
Fattah-alhosseini A, Vafaeian S. Passivation behavior of a ferritic stainless steel in concentrated alkaline solutions[J]. Integr. Med. Res., 2015, 4(4): 423–428.
DOI: 10.1016/j.jmrt.2015.02.003
Google Scholar