[1]
Myhr O R, Grong H G, Andersen S J, Modeling of the age hardenign behavior of Al-Mg- Si ALLOYS,Acta Mater.,c(2001) 65-75.
Google Scholar
[2]
Marioara C D, Nordmark H, Andersen SJ. Post-β" phases and their influence on microstructure and hardness in 6xxx Al-Mg-Si alloys, J. Mater. Sci., 41(2006)471-478.
DOI: 10.1007/s10853-005-2470-1
Google Scholar
[3]
Myhr O R, GrongHG, FjærC. Modelling of the microstructure and strength evolution in al-mg-si alloys during multistage thermal processing, Acta Mater., 52(2004) 4997-5008.
DOI: 10.1016/j.actamat.2004.07.002
Google Scholar
[4]
Song J L, Lin S B, Yang C L. Effects of Si additions on intermetallic compound layer of aluminum–steel TIG welding–brazing joint[J]. Journal of Alloys and Compounds, 2009, 488(1):217-222.
DOI: 10.1016/j.jallcom.2009.08.084
Google Scholar
[5]
Huang Y, Fan D, Fan Q. Study of mechanism of activating flux increasing weld penetration of AC A-TIG welding for aluminum alloy[J]. Frontiers of Mechanical Engineering in China, 2007, 2(4):442-447.
DOI: 10.1007/s11465-007-0076-9
Google Scholar
[6]
Van Huis M A, Chen J H, Sluiter M H F. Phase stability and structural features of matrix-embedded hardening precipitates in Al-Mg-Si alloys in the early stages of evolution[J]. Acta Materialia, 2007, 55(6):2183-2199.
DOI: 10.1016/j.actamat.2006.11.019
Google Scholar
[7]
Missori S, Sili A. Mechanical behaviour of 6082-T6 aluminium alloy welds[J]. Metallurgical Science and Technology, 2000, 18(1):12~18.
Google Scholar
[8]
Myhr O R, O Grong, Andersen S J. Modelling of the age hardening behaviour of Al–Mg–Si alloys[J]. Acta Materialia, 2001, 49(1):65-75.
DOI: 10.1016/s1359-6454(00)00301-3
Google Scholar
[9]
Poole W J, Wang X, Lloyd D J. The shearable–non-shearable transition in Al–Mg–Si–Cu precipitation hardening alloys: implications on the distribution of slip, work hardening and fracture[J]. Philosophical Magazine, 2005, 85(26-27):3113-3135.
DOI: 10.1080/14786430500154935
Google Scholar
[10]
Gupta A K , Lloyd D J , Court S A . Precipitation hardening in Al–Mg–Si alloys with and without excess Si[J]. Materials Science & Engineering A (Structural Materials:, Properties, Microstructure and Processing), 2001, 316(1-2):11-17.
DOI: 10.1016/s0921-5093(01)01247-3
Google Scholar
[11]
Fallah V, Korinek A, Ofori-Opoku N. Atomic-scale pathway of early-stage precipitation in Al–Mg–Si alloys[J]. Acta Materialia, 2015, 82:457-467.
DOI: 10.1016/j.actamat.2014.09.004
Google Scholar
[12]
Ninive P H, Strandlie A, Gulbrandsen-Dahl S. Detailed atomistic insight into the β" phase in Al–Mg–Si alloys[J]. Acta Materialia, 2014, 69:126-134.
DOI: 10.1016/j.actamat.2014.01.052
Google Scholar
[13]
Van Huis M A, Chen J H, Sluiter M H F. Phase stability and structural features of matrix-embedded hardening precipitates in Al-Mg-Si alloys in the early stages of evolution[J]. Acta Materialia, 2007, 55(6):2183-2199.
DOI: 10.1016/j.actamat.2006.11.019
Google Scholar