Compressive Strength of Zirconia-Toughened Alumina (ZTA) Foam with CaCO3 and CeO2 Addition via Polymeric Sponge Replication Technique

Article Preview

Abstract:

The effects of CaCO3 and CeO2 additions on structural, microstructural and mechanical properties of zirconia-toughened alumina (ZTA) foams were investigated. The foams were fabricated via the sponge replication technique and sintered for 4 hours. The CaCO3 decomposition and elongated hibonite grains produced micropores. The compressive strength for both ZTA foams after adding CaCO3 and CeO2 was higher than the rest of the foams, respectively. The addition of CeO2 triggered larger yttria-stabilized zirconia (YSZ) grains, which significantly improved the compressive strength of ZTA.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

234-239

Citation:

Online since:

January 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.F. Ashby, R.F.M. Medalist, The mechanical properties of cellular solids, Metall. Trans. A. 14 (1983) 1755–1769.

Google Scholar

[2] J. Wang, R. Stevens, Review Zirconia-toughened alumina (ZTA) ceramics, J. Mater. Sci. 24 (1989) 3421–3440. http://link.springer.com/article/10.1007/BF02385721 (accessed September 11, 2013).

DOI: 10.1007/bf02385721

Google Scholar

[3] W. Tuan, R. Chen, T. Wang, C. Cheng, P. Kuo, Mechanical properties of Al2O3/ZrO2 composites, J. Eur. Ceram. Soc. 22 (2002) 2827–2833. http://cat.inist.fr/?aModele=afficheN&cpsidt=14362725 (accessed April 19, 2012).

DOI: 10.1016/s0955-2219(02)00043-2

Google Scholar

[4] U. Soy, A. Demir, F. Caliskan, Effect of bentonite addition on fabrication of reticulated porous SiC ceramics for liquid metal infiltration, Ceram. Int. 37 (2011) 15–19.

DOI: 10.1016/j.ceramint.2010.07.028

Google Scholar

[5] X. Yao, S. Tan, Z. Huang, D. Jiang, Effect of recoating slurry viscosity on the properties of reticulated porous silicon carbide ceramics, Ceram. Int. 32 (2006) 137–142.

DOI: 10.1016/j.ceramint.2005.01.008

Google Scholar

[6] N.A. Rejab, A.Z.A. Azhar, M.M. Ratnam, Z.A. Ahmad, The effects of CeO2 addition on the physical, microstructural and mechanical properties of yttria stabilized zirconia toughened alumina (ZTA), Int. J. Refract. Met. Hard Mater. 36 (2013) 162–166.

DOI: 10.1016/j.ijrmhm.2012.08.010

Google Scholar

[7] Z.D.I. Sktani, A.Z.A. Azhar, M.M. Ratnam, Z.A. Ahmad, The influence of in-situ formation of hibonite on the properties of zirconia toughened alumina (ZTA) composites, Ceram. Int. 40 (2014) 6211–6217.

DOI: 10.1016/j.ceramint.2013.11.076

Google Scholar

[8] H. Manshor, S. Aris, A. Zahirani, A.Z.A. Azhar, E. Chan, Z. Ari, et al., Effects of TiO2 addition on the phase, mechanical properties, and microstructure of zirconia-toughened alumina ceramic composite, Ceram. Int. 41 (2015) 3961–3967.

DOI: 10.1016/j.ceramint.2014.11.080

Google Scholar

[9] A.R. Jamaludin, S.R. Kasim, A.K. Ismail, M.Z. Abdullah, Z.A. Ahmad, The effect of sago as binder in the fabrication of alumina foam through the polymeric sponge replication technique, J. Eur. Ceram. Soc. 35 (2015) 1905–1914.

DOI: 10.1016/j.jeurceramsoc.2014.12.005

Google Scholar

[10] A.J. Sánchez-Herencia, R. Moreno, C. Baudín, Fracture behaviour of alumina-calcium hexaluminate composites obtained by colloidal processing, J. Eur. Ceram. Soc. 20 (2000) 2575–2583.

DOI: 10.1016/s0955-2219(00)00123-0

Google Scholar

[11] I.-K. Jun, Y.-M. Kong, S.-H. Lee, H.-E. Kim, H.-W. Kim, K.C. Goretta, Reinforcement of a Reticulated Porous Ceramic by a Novel Infiltration Technique, J. Am. Ceram. Soc. 89 (2006) 2317–2319.

DOI: 10.1111/j.1551-2916.2006.00997.x

Google Scholar

[12] M.M. Hossen, F.-U.-Z. Chowdhury, M. a. Gafur, a. K.M.A. Hakim, Structural and Mechanical Properties of Zirconia Toughened Alumina (ZTA) Composites, Int. J. Eng. Res. Technol. 3 (2014) 2128–2134.

Google Scholar

[13] D. Casellas, M.M. Nagl, L. Llanes, M. Anglada, Fracture toughness of alumina and ZTA ceramics: microstructural coarsening effects, J. Mater. Process. Technol. 143–144 (2003) 148–152. doi:http://dx.doi.org/10.1016/S0924-0136(03)00396-0.

DOI: 10.1016/s0924-0136(03)00396-0

Google Scholar

[14] A.Z.A. Azhar, M.M. Ratnam, Z.A. Ahmad, Effect of Al2O3/YSZ microstructures on wear and mechanical properties of cutting inserts, J. Alloys Compd. 478 (2009) 608–614.

DOI: 10.1016/j.jallcom.2008.11.156

Google Scholar

[15] N.A. Rejab, Z.D.I. Sktani, T.Y. Dar, W.F.F.W. Ali, A.R. Jamaludin, Z.A. Ahmad, The capability of hibonite elongated grains to influence physical, microstructural, and mechanical properties of zirconia toughened alumina–CeO2–MgO ceramics, Int. J. Refract. Met. Hard Mater. 58 (2016) 104–109.

DOI: 10.1016/j.ijrmhm.2016.04.008

Google Scholar

[16] K. Vishista, F.D. Gnanam, Microstructural development of SrAl12O19 in alumina-strontia composites, J. Eur. Ceram. Soc. 29 (2009) 77–83.

DOI: 10.1016/j.jeurceramsoc.2008.05.041

Google Scholar

[17] D. Casellas, I. Rafols, L. Llanes, M. Anglada, Fracture toughness of zirconia-alumina composites, Int. J. Refract. Metals Hard Mater. 17 (1999) 11–20.

DOI: 10.1016/s0263-4368(98)00064-x

Google Scholar

[18] Z.Y. Deng, J. She, Y. Inagaki, J.F. Yang, T. Ohji, Y. Tanaka, Reinforcement by crack-tip blunting in porous ceramics, J. Eur. Ceram. Soc. 24 (2004) 2055–2059.

DOI: 10.1016/s0955-2219(03)00365-0

Google Scholar