[1]
N.A. Rejab, A.Z.A. Azhar, M.M. Ratnam, Z.A. Ahmad, The effects of CeO2 addition on the physical, microstructural and mechanical properties of yttria stabilized zirconia toughened alumina (ZTA), Int. J. Refract. Met. Hard Mater. 36 (2013) 162–166.
DOI: 10.1016/j.ijrmhm.2012.08.010
Google Scholar
[2]
A. Zahirani, A. Azhar, H. Mohamed, M. Maran, Z.A. Ahmad, The Effects of Cr2O3 Addition on Microstructure and Fracture Toughness of ZTA Ceramic Composite, J. Nucl. Relat. Technol. 10 (2013) 9–15.
Google Scholar
[3]
N.K. Su, M. Fadhlullah, A.A. Razak, B. Johar, M.A. Idris, Z.A. Ahmad, The Role of Nb2Zr6O17 Phase on the Hardness and Fracture Toughness of ZTA/Nb2O5 by Cold Isostatic Pressing, in: Mater. Sci. Forum, 2017: p.126–130.
Google Scholar
[4]
S.M. Kurtz, S. Kocagöz, C. Arnholt, R. Huet, M. Ueno, W.L. Walter, Advances in zirconia toughened alumina biomaterials for total joint replacement., J. Mech. Behav. Biomed. Mater. 31 (2014) 107–16.
DOI: 10.1016/j.jmbbm.2013.03.022
Google Scholar
[5]
I. Akin, E. Yilmaz, F. Sahin, O. Yucel, G. Goller, Effect of CeO2 addition on densification and microstructure of Al2O3–YSZ composites, Ceram. Int. 37 (2011) 3273–3280.
DOI: 10.1016/j.ceramint.2011.05.123
Google Scholar
[6]
N.A. Rejab, W.K. Lee, Z.D.I. Sktani, Z.A. Ahmad, Hardness and toughness enhancement of CeO2 addition to ZTA ceramics through HIPping technique, Int. J. Refract. Met. Hard Mater. 69 (2017) 60–65.
DOI: 10.1016/j.ijrmhm.2017.08.002
Google Scholar
[7]
M. Khoshkalam, M.A. Faghihi-Sani, An investigation on mechanical properties of Alumina–Zirconia–Magnesia spinel composite ceramics fabricated by gel-casting using solution combustion synthesized powder, Mater. Sci. Eng. A. 587 (2013) 336–343.
DOI: 10.1016/j.msea.2013.09.007
Google Scholar
[8]
F. Liang, J. Liu, Sintering, Microstructure and Electricity Properties of ITO Targets with Bi2O3–Nb2O5 Addition, Ceram. Int. 43 (2017) 5856–5861.
DOI: 10.1016/j.ceramint.2017.02.009
Google Scholar
[9]
A. Gionea, E. Andronescu, G. Voicu, C. Bleotu, V.A. Surdu, Influence of hot isostatic pressing on ZrO2–CaO dental ceramics properties, Int. J. Pharm. 510 (2016) 439–448.
DOI: 10.1016/j.ijpharm.2015.10.044
Google Scholar
[10]
D. Gómez, R. Palma, Phenomenological Modeling of Mo in a Hot Isostatic Pressing (HIP) Process, Procedia Mater. Sci. 9 (2015) 271–278.
DOI: 10.1016/j.mspro.2015.04.034
Google Scholar
[11]
A. Rittidech, P. Wisuwan, T. Pinkhunthod, Effect of Y2O3 Additions on Microstructure and Properties of Alumina–Magnesia Ceramics , Am. J. Appl. Sci. 15 (2018) 409–415.
DOI: 10.3844/ajassp.2018.409.415
Google Scholar
[12]
S.G. Huang, K. Vanmeensel, O. Van Der Biest, J. Vleugels, Influence of CeO2 Reduction on the Microstructure and Mechanical Properties of Pulsed Electric Current Sintered Y2O3-CeO2 Co-Stabilized ZrO2 Ceramics, J. Am. Ceram. Soc. 90 (2007) 1420–1426.
DOI: 10.1111/j.1551-2916.2007.01570.x
Google Scholar
[13]
S. Boullosa-eiras, E. Vanhaecke, T. Zhao, D. Chen, A. Holmen, Raman spectroscopy and X-ray diffraction study of the phase transformation of, 166 (2011) 10–17.
DOI: 10.1016/j.cattod.2010.05.038
Google Scholar
[14]
S. Shi, S. Cho, T. Goto, T. Sekino, Role of CeAl11O18 in reinforcing Al2O3/Ti composites by adding, Int. J. Appl. Ceram. Technol. 18 (2020) 170–181.
DOI: 10.1111/ijac.13629
Google Scholar
[15]
N. V. Skorodumova, S.I. Simak, B.I. Lundqvist, I.A. Abrikosov, B. Johansson, Quantum origin of the oxygen storage capability of ceria, Phys. Rev. Lett. 89 (2002) 166601/1-166601/4.
DOI: 10.1103/physrevlett.89.166601
Google Scholar
[16]
N.A. Rejab, Z.D.I. Sktani, N.K. Su, B. Johar, Z.A. Ahmad, Role of pentavalent niobium oxide additions on the microstructure and structure of zirconia toughened alumina using hot isostatic press sintering, AIP Conf. Proc. 2068 (2019) 3–9.
DOI: 10.1063/1.5089371
Google Scholar