[1]
N.A. Baharuddin, A. Muchtar, M.R. Somalu, A. Muhammed, & H. Abd Rahman, (2016). Influence of sintering temperature on the polarization resistance of La0. 6Sr0. 4Co0. 2Fe0. 8O3-δ–SDC carbonate composite cathode. Ceramics–Silikáty, 60(2), 115-121.
DOI: 10.13168/cs.2016.0017
Google Scholar
[2]
S. Lee, C.L. Chu, M.J. Tsai, & J. Lee, (2010). High temperature oxidation behavior of interconnect coated with LSCF and LSM for solid oxide fuel cell by screen printing. Applied Surface Science, 256(6), 1817-1824.
DOI: 10.1016/j.apsusc.2009.10.013
Google Scholar
[3]
B. Timurkutluk, C. Timurkutluk, M. D. Mat, & Y. Kaplan, (2016). A review on cell/stack designs for high performance solid oxide fuel cells. Renewable and Sustainable Energy Reviews, 56, 1101-1121.
DOI: 10.1016/j.rser.2015.12.034
Google Scholar
[4]
S. Fontana, R. Amendola, S. Chevalier, P. Piccardo, G. Caboche, M. Viviani, & M. Sennour, (2007). Metallic interconnects for SOFC: Characterisation of corrosion resistance and conductivity evaluation at operating temperature of differently coated alloys. Journal of Power Sources, 171(2), 652-662.
DOI: 10.1016/j.jpowsour.2007.06.255
Google Scholar
[5]
J. W. Fergus, (2005). Metallic interconnects for solid oxide fuel cells. Materials Science and Engineering: A, 397(1-2), 271-283.
DOI: 10.1016/j.msea.2005.02.047
Google Scholar
[6]
Z. Yang, J. S. Hardy, M. S. Walker, G. Xia, S. P. Simner, & J. W. Stevenson, (2004). Structure and conductivity of thermally grown scales on ferritic Fe-Cr-Mn steel for SOFC interconnect applications. Journal of the Electrochemical Society, 151(11), A1825.
DOI: 10.1149/1.1797031
Google Scholar
[7]
J. J. Choi, J. Ryu, B. D. Hahn, W. H. Yoon, B. K. Lee, & D. S. Park, (2009). Dense spinel MnCo 2 O 4 film coating by aerosol deposition on ferritic steel alloy for protection of chromic evaporation and low-conductivity scale formation. Journal of materials science, 44(3), 843-848.
DOI: 10.1007/s10853-008-3132-x
Google Scholar
[8]
Y. Liu, (2008). Performance evaluation of several commercial alloys in a reducing environment. Journal of Power Sources, 179(1), 286-291.
DOI: 10.1016/j.jpowsour.2007.12.067
Google Scholar
[9]
J. H. Kim, R. H. Song, & S. H. Hyun, (2004). Effect of slurry-coated LaSrMnO3 on the electrical property of Fe–Cr alloy for metallic interconnect of SOFC. Solid State Ionics, 174(1-4), 185-191.
DOI: 10.1016/j.ssi.2004.07.032
Google Scholar
[10]
J. Wu, C. Li, C. Johnson, & X. Liu, (2008). Evaluation of SmCo and SmCoN magnetron sputtering coatings for SOFC interconnect applications. Journal of power sources, 175(2), 833-840.
DOI: 10.1016/j.jpowsour.2007.09.105
Google Scholar
[11]
C. Sun, R. Hui, & J. Roller, (2010). Cathode materials for solid oxide fuel cells: a review. Journal of Solid State Electrochemistry, 14(7), 1125-1144.
DOI: 10.1007/s10008-009-0932-0
Google Scholar
[12]
W. Wei, W. Chen, & D. G. Ivey, (2009). Oxidation resistance and electrical properties of anodically electrodeposited Mn–Co oxide coatings for solid oxide fuel cell interconnect applications. Journal of Power Sources, 186(2), 428-434.
DOI: 10.1016/j.jpowsour.2008.09.114
Google Scholar
[13]
H. Zhang, Z. Zhan, & X. Liu, (2011). Electrophoretic deposition of (Mn, Co) 3O4 spinel coating for solid oxide fuel cell interconnects. Journal of Power Sources, 196(19), 8041-8047.
DOI: 10.1016/j.jpowsour.2011.05.053
Google Scholar
[14]
Z. Yang, G. G. Xia, X. H. Li, & J. W. Stevenson, (2007). (Mn, Co) 3O4 spinel coatings on ferritic stainless steels for SOFC interconnect applications. International Journal of Hydrogen Energy, 32(16), 3648-3654.
DOI: 10.1016/j.ijhydene.2006.08.048
Google Scholar
[15]
B. Hua, Y. Kong, F. Lu, J. Zhang, J. Pu, & J. Li, (2010). The electrical property of MnCo 2 O 4 and its application for SUS 430 metallic interconnect. Chinese Science Bulletin, 55(33), 3831-3837.
DOI: 10.1007/s11434-010-3161-0
Google Scholar
[16]
W. H. Huang, S. Gopalan, U. B. Pal, et. al., 2008. Evaluation of electrophoretically deposited CuMn1.8O4 spinel coatings on Crofer 22 APU for solid oxide fuel cell interconnects. Journal of the Electrochemical Society, 155(11):B1161-B1167.
DOI: 10.1149/1.2975367
Google Scholar
[17]
M. Verde, M Peiteado, A. C. Caballero, et al., 2012. Electrophoretic deposition of transparent ZnO thin films from highly stabilized colloidal suspensions. Journal of Colloid and Interface Science, 373 (1): 27-33.
DOI: 10.1016/j.jcis.2011.09.039
Google Scholar
[18]
M. R. Somalu, A. Muchtar, W. R. W. Daud, et al., 2017. Screenprinting inks for the fabrication of solid oxide fuel cell films: a review. Renewable and Sustainable Energy Reviews, 75:426-439.
DOI: 10.1016/j.rser.2016.11.008
Google Scholar
[19]
R. N. Basu, C. A. Randall, & M. J. Mayo, (2001). Fabrication of dense zirconia electrolyte films for tubular solid oxide fuel cells by electrophoretic deposition. Journal of the American Ceramic Society, 84(1), 33-40.
DOI: 10.1111/j.1151-2916.2001.tb00604.x
Google Scholar
[20]
P. Sarkar, & P. S. Nicholson, (1996). Electrophoretic deposition (EPD): mechanisms, kinetics, and application to ceramics. Journal of the American Ceramic Society, 79(8), 1987-2002.
DOI: 10.1111/j.1151-2916.1996.tb08929.x
Google Scholar
[21]
H. A. Rahman, A. Muchtar, N. Muhamad, & H. Abdullah, (2010). Electrophoretic Deposition of La0. 6Sr0. 4Co0. 2Fe0. 8O3-δ Cathode Film on Stainless Steel Substrates. In Advanced Materials Research (Vol. 139, pp.145-148). Trans Tech Publications Ltd.
Google Scholar
[22]
H. Zhu, S. Geng, G. Chen, & F. Wang, (2019). Electrophoretic deposition of trimanganese tetraoxide coatings on Ni-coated SUS 430 steel interconnect. Journal of Alloys and Compounds, 782, 100-109.
DOI: 10.1016/j.jallcom.2018.12.174
Google Scholar
[23]
J. Ma, & W. Cheng, (2002). Electrophoretic deposition of lead zirconate titanate ceramics. Journal of the American Ceramic Society, 85(7), 1735-1737.
DOI: 10.1111/j.1151-2916.2002.tb00344.x
Google Scholar
[24]
Y. Lowrance, M. A. Azmi, L. M. Basar, & H. A. Rahman, H. (2021). The Influence of Electrophoretic Deposition (EPD) Parameters on SS430 Spinel Coated Characteristic. International Journal of Integrated Engineering, 13(2), 258-264.
Google Scholar
[25]
J. H. Zhu, M. J. Lewis, S. W. Du, & Y. T. Li, (2015). CeO2-doped (Co, Mn) 3O4 coatings for protecting solid oxide fuel cell interconnect alloys. Thin Solid Films, 596, 179-184.
DOI: 10.1016/j.tsf.2015.07.085
Google Scholar
[26]
M. F. Sies, N. F. Madzlan, N. Asmuin, A. Sadikin, A & H. Zakaria, (2017, September). Determine spray droplets on water sensitive paper (WSP) for low pressure deflector nozzle using image J. In IOP Conference Series: Materials Science and Engineering (Vol. 243, No. 1, p.012047). IOP Publishing.
DOI: 10.1088/1757-899x/243/1/012047
Google Scholar
[27]
K. K. Nanda, A. Maisels, F. E. Kruis, H. Fissan, H & S. Stappert, (2003). Higher surface energy of free nanoparticles. Physical review letters, 91(10), 106102.
DOI: 10.1103/physrevlett.91.106102
Google Scholar
[28]
M. H. I. Ibrahim, M. H. A. Manaff, M. H. Othman, N. Mustafa, S. R. Masrol, & N. H. Rafai, (2014). Optimisation of Processing Condition Using Taguchi Method on Warpage for HDPE-Clay Composite. Applied Mechanics and Materials, 660, 28–32.
DOI: 10.4028/www.scientific.net/amm.660.28
Google Scholar
[29]
L. Besra, T. Uchikoshi, T. S. Suzuki, & Y. Sakka, (2008). Bubble‐Free Aqueous Electrophoretic Deposition (EPD) by Pulse‐Potential Application. Journal of the American Ceramic Society, 91(10), 3154-3159.
DOI: 10.1111/j.1551-2916.2008.02591.x
Google Scholar
[30]
J. Zhang, W. Li, S. Wang, & S. Wang, (2015). Electrophoretic deposition of La2Zr2O7 coating in non-aqueous media on Cf/SiC substrate. Surface and Coatings Technology, 278, 80-86.
DOI: 10.1016/j.surfcoat.2015.08.005
Google Scholar
[31]
P. Amrollahi, J. S. Krasinski, R. Vaidyanathan, L. Tayebi, & D. Vashaee, (2015). Electrophoretic deposition (EPD): Fundamentals and applications from nano-to micro-scale structures. Handbook of Nanoelectrochemistry, Springer International Publishing Switzerland.
DOI: 10.1007/978-3-319-15207-3_7-1
Google Scholar
[32]
S. R. Masrol, M. H. I. Ibrahim, S. Adnan, M. S. A. A. Tajudin, R. A. Raub, S. N. A. A. Razak, & S. N. F. M. Zain, (2016). Characteristics of linerboard and corrugated medium paper made from durian rinds chemi-mechanical pulp. In MATEC Web of Conferences (Vol. 51, p.02007). EDP Sciences.
DOI: 10.1051/matecconf/20165102007
Google Scholar
[33]
H. Abdoli, & P. Alizadeh, (2012). Electrophoretic deposition of (Mn, Co) 3O4 spinel nano powder on SOFC metallic interconnects. Materials Letters, 80, 53-55.
DOI: 10.1016/j.matlet.2012.04.072
Google Scholar
[34]
M. A. Azmi, N. A. A. Ismail, M. Rizamarhaiza, & H. Taib, (2016, July). Characterisation of silica derived from rice husk (Muar, Johor, Malaysia) decomposition at different temperatures. In AIP Conference Proceedings (Vol. 1756, No. 1, p.020005). AIP Publishing LLC.
DOI: 10.1063/1.4958748
Google Scholar
[35]
P. Sarkar, & P. S. Nicholson, (1996). Electrophoretic deposition (EPD): mechanisms, kinetics, and application to ceramics. Journal of the American Ceramic Society, 79(8), 1987-2002.
DOI: 10.1111/j.1151-2916.1996.tb08929.x
Google Scholar
[36]
N. A. Baharuddin, N. F. A. Rahman, H. A. Rahman, M. R. Somalu, M. A. Azmi, & J. Raharjo, (2020). Fabrication of high‐quality electrode films for solid oxide fuel cell by screen printing: A review on important processing parameters. International Journal of Energy Research, 44(11), 8296-8313.
DOI: 10.1002/er.5518
Google Scholar
[37]
M. J. Santillán, A. Caneiro, N. Quaranta, & A. R. Boccaccini, (2009). Electrophoretic deposition of La0. 6Sr0. 4Co0. 8Fe0. 2O3− δ cathodes on Ce0. 9Gd0. 1O1. 95 substrates for intermediate temperature solid oxide fuel cell (IT-SOFC). Journal of the European Ceramic Society, 29(6), 1125-1132.
DOI: 10.1016/j.jeurceramsoc.2008.07.057
Google Scholar
[38]
S. Molin, et al. 2017. Microstructural and Electrical Characterization of Mn-Co Spinel Protective Coatings for Solid Oxide Cell Interconnects., Journal of the European Ceramic Society 37(15): 4781–91.
DOI: 10.1016/j.jeurceramsoc.2017.07.011
Google Scholar
[39]
K. H. Tan, H. A. Rahman, & H. Taib, (2019). Coating layer and influence of transition metal for ferritic stainless steel interconnector solid oxide fuel cell: A review. International Journal of Hydrogen Energy, 44(58), 30591-30605.
DOI: 10.1016/j.ijhydene.2019.06.155
Google Scholar
[40]
N. Mustaffa, A. Khalid, M. F. Sies, H. Zakaria, & B. Manshoor, (2014). Preheated Biodiesel Derived from Vegetable Oil on Performance and Emissions of Diesel Engines: A Review. In Applied Mechanics and Materials (Vol. 465, pp.285-290). Trans Tech Publications Ltd.
DOI: 10.4028/www.scientific.net/amm.465-466.285
Google Scholar
[41]
M. Norrizal, M. Fawzi, S. A. Osman, and M. M. Tukiman, (2019). Experimental Analysis of Liquid LPG Injection on the Combustion, Performance and Emissions in a Spark Ignition Engine., IOP Conference Series: Materials Science and Engineering 469 (2019): 1–12.
DOI: 10.1088/1757-899x/469/1/012033
Google Scholar