Influence of Electrophoretic Deposition (EPD) Voltage on SOFC Interconnect Morphology

Article Preview

Abstract:

Solid oxide fuel cell has become one of the interest in the sustainable energy field. In order to improve the efficiency of a solid oxide fuel cell (SOFC), the interconnect must be coated with a protective coating of (MnCO)3O4 spinel coated stainless steel. Commercial manganese cobalt (MnCO)3O4 was used as a protective coating on ferritic stainless steel in this study using the electrophoretic deposition (EPD) coating technique. This article examines the impact of voltage deposition towards morphological characteristics. The goals of these studies are to find the best interconnect coating parameter while experimenting with voltage deposition. The spinel coated interconnect (MnCO)3O4 was studied using Elemental Energy Dispersive X-ray Spectroscopy (EDS). The surface morphology and coating thickness are examined using a Scanning Electron Microscope (SEM). X-ray diffraction (XRD) is used to determine the phase of the spinel coated interconnect. The EPD coating technique for (MnCO)3O4 spinel coated interconnect is carried out in an aqueous suspension with 30V and 40V with coating durations of 20s, 30s, 40s, 50s, and 60s. By observing the deposition morphology and thickness coating at 30V and 40V, the best covering parameter for interconnect is 30V, 40s which fulfil the interconnect requirement.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

555-562

Citation:

Online since:

January 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N.A. Baharuddin, A. Muchtar, M.R. Somalu, A. Muhammed, & H. Abd Rahman, (2016). Influence of sintering temperature on the polarization resistance of La0. 6Sr0. 4Co0. 2Fe0. 8O3-δ–SDC carbonate composite cathode. Ceramics–Silikáty, 60(2), 115-121.

DOI: 10.13168/cs.2016.0017

Google Scholar

[2] S. Lee, C.L. Chu, M.J. Tsai, & J. Lee, (2010). High temperature oxidation behavior of interconnect coated with LSCF and LSM for solid oxide fuel cell by screen printing. Applied Surface Science, 256(6), 1817-1824.

DOI: 10.1016/j.apsusc.2009.10.013

Google Scholar

[3] B. Timurkutluk, C. Timurkutluk, M. D. Mat, & Y. Kaplan, (2016). A review on cell/stack designs for high performance solid oxide fuel cells. Renewable and Sustainable Energy Reviews, 56, 1101-1121.

DOI: 10.1016/j.rser.2015.12.034

Google Scholar

[4] S. Fontana, R. Amendola, S. Chevalier, P. Piccardo, G. Caboche, M. Viviani, & M. Sennour, (2007). Metallic interconnects for SOFC: Characterisation of corrosion resistance and conductivity evaluation at operating temperature of differently coated alloys. Journal of Power Sources, 171(2), 652-662.

DOI: 10.1016/j.jpowsour.2007.06.255

Google Scholar

[5] J. W. Fergus, (2005). Metallic interconnects for solid oxide fuel cells. Materials Science and Engineering: A, 397(1-2), 271-283.

DOI: 10.1016/j.msea.2005.02.047

Google Scholar

[6] Z. Yang, J. S. Hardy, M. S. Walker, G. Xia, S. P. Simner, & J. W. Stevenson, (2004). Structure and conductivity of thermally grown scales on ferritic Fe-Cr-Mn steel for SOFC interconnect applications. Journal of the Electrochemical Society, 151(11), A1825.

DOI: 10.1149/1.1797031

Google Scholar

[7] J. J. Choi, J. Ryu, B. D. Hahn, W. H. Yoon, B. K. Lee, & D. S. Park, (2009). Dense spinel MnCo 2 O 4 film coating by aerosol deposition on ferritic steel alloy for protection of chromic evaporation and low-conductivity scale formation. Journal of materials science, 44(3), 843-848.

DOI: 10.1007/s10853-008-3132-x

Google Scholar

[8] Y. Liu, (2008). Performance evaluation of several commercial alloys in a reducing environment. Journal of Power Sources, 179(1), 286-291.

DOI: 10.1016/j.jpowsour.2007.12.067

Google Scholar

[9] J. H. Kim, R. H. Song, & S. H. Hyun, (2004). Effect of slurry-coated LaSrMnO3 on the electrical property of Fe–Cr alloy for metallic interconnect of SOFC. Solid State Ionics, 174(1-4), 185-191.

DOI: 10.1016/j.ssi.2004.07.032

Google Scholar

[10] J. Wu, C. Li, C. Johnson, & X. Liu, (2008). Evaluation of SmCo and SmCoN magnetron sputtering coatings for SOFC interconnect applications. Journal of power sources, 175(2), 833-840.

DOI: 10.1016/j.jpowsour.2007.09.105

Google Scholar

[11] C. Sun, R. Hui, & J. Roller, (2010). Cathode materials for solid oxide fuel cells: a review. Journal of Solid State Electrochemistry, 14(7), 1125-1144.

DOI: 10.1007/s10008-009-0932-0

Google Scholar

[12] W. Wei, W. Chen, & D. G. Ivey, (2009). Oxidation resistance and electrical properties of anodically electrodeposited Mn–Co oxide coatings for solid oxide fuel cell interconnect applications. Journal of Power Sources, 186(2), 428-434.

DOI: 10.1016/j.jpowsour.2008.09.114

Google Scholar

[13] H. Zhang, Z. Zhan, & X. Liu, (2011). Electrophoretic deposition of (Mn, Co) 3O4 spinel coating for solid oxide fuel cell interconnects. Journal of Power Sources, 196(19), 8041-8047.

DOI: 10.1016/j.jpowsour.2011.05.053

Google Scholar

[14] Z. Yang, G. G. Xia, X. H. Li, & J. W. Stevenson, (2007). (Mn, Co) 3O4 spinel coatings on ferritic stainless steels for SOFC interconnect applications. International Journal of Hydrogen Energy, 32(16), 3648-3654.

DOI: 10.1016/j.ijhydene.2006.08.048

Google Scholar

[15] B. Hua, Y. Kong, F. Lu, J. Zhang, J. Pu, & J. Li, (2010). The electrical property of MnCo 2 O 4 and its application for SUS 430 metallic interconnect. Chinese Science Bulletin, 55(33), 3831-3837.

DOI: 10.1007/s11434-010-3161-0

Google Scholar

[16] W. H. Huang, S. Gopalan, U. B. Pal, et. al., 2008. Evaluation of electrophoretically deposited CuMn1.8O4 spinel coatings on Crofer 22 APU for solid oxide fuel cell interconnects. Journal of the Electrochemical Society, 155(11):B1161-B1167.

DOI: 10.1149/1.2975367

Google Scholar

[17] M. Verde, M Peiteado, A. C. Caballero, et al., 2012. Electrophoretic deposition of transparent ZnO thin films from highly stabilized colloidal suspensions. Journal of Colloid and Interface Science, 373 (1): 27-33.

DOI: 10.1016/j.jcis.2011.09.039

Google Scholar

[18] M. R. Somalu, A. Muchtar, W. R. W. Daud, et al., 2017. Screenprinting inks for the fabrication of solid oxide fuel cell films: a review. Renewable and Sustainable Energy Reviews, 75:426-439.

DOI: 10.1016/j.rser.2016.11.008

Google Scholar

[19] R. N. Basu, C. A. Randall, & M. J. Mayo, (2001). Fabrication of dense zirconia electrolyte films for tubular solid oxide fuel cells by electrophoretic deposition. Journal of the American Ceramic Society, 84(1), 33-40.

DOI: 10.1111/j.1151-2916.2001.tb00604.x

Google Scholar

[20] P. Sarkar, & P. S. Nicholson, (1996). Electrophoretic deposition (EPD): mechanisms, kinetics, and application to ceramics. Journal of the American Ceramic Society, 79(8), 1987-2002.

DOI: 10.1111/j.1151-2916.1996.tb08929.x

Google Scholar

[21] H. A. Rahman, A. Muchtar, N. Muhamad, & H. Abdullah, (2010). Electrophoretic Deposition of La0. 6Sr0. 4Co0. 2Fe0. 8O3-δ Cathode Film on Stainless Steel Substrates. In Advanced Materials Research (Vol. 139, pp.145-148). Trans Tech Publications Ltd.

Google Scholar

[22] H. Zhu, S. Geng, G. Chen, & F. Wang, (2019). Electrophoretic deposition of trimanganese tetraoxide coatings on Ni-coated SUS 430 steel interconnect. Journal of Alloys and Compounds, 782, 100-109.

DOI: 10.1016/j.jallcom.2018.12.174

Google Scholar

[23] J. Ma, & W. Cheng, (2002). Electrophoretic deposition of lead zirconate titanate ceramics. Journal of the American Ceramic Society, 85(7), 1735-1737.

DOI: 10.1111/j.1151-2916.2002.tb00344.x

Google Scholar

[24] Y. Lowrance, M. A. Azmi, L. M. Basar, & H. A. Rahman, H. (2021). The Influence of Electrophoretic Deposition (EPD) Parameters on SS430 Spinel Coated Characteristic. International Journal of Integrated Engineering, 13(2), 258-264.

Google Scholar

[25] J. H. Zhu, M. J. Lewis, S. W. Du, & Y. T. Li, (2015). CeO2-doped (Co, Mn) 3O4 coatings for protecting solid oxide fuel cell interconnect alloys. Thin Solid Films, 596, 179-184.

DOI: 10.1016/j.tsf.2015.07.085

Google Scholar

[26] M. F. Sies, N. F. Madzlan, N. Asmuin, A. Sadikin, A & H. Zakaria, (2017, September). Determine spray droplets on water sensitive paper (WSP) for low pressure deflector nozzle using image J. In IOP Conference Series: Materials Science and Engineering (Vol. 243, No. 1, p.012047). IOP Publishing.

DOI: 10.1088/1757-899x/243/1/012047

Google Scholar

[27] K. K. Nanda, A. Maisels, F. E. Kruis, H. Fissan, H & S. Stappert, (2003). Higher surface energy of free nanoparticles. Physical review letters, 91(10), 106102.

DOI: 10.1103/physrevlett.91.106102

Google Scholar

[28] M. H. I. Ibrahim, M. H. A. Manaff, M. H. Othman, N. Mustafa, S. R. Masrol, & N. H. Rafai, (2014). Optimisation of Processing Condition Using Taguchi Method on Warpage for HDPE-Clay Composite. Applied Mechanics and Materials, 660, 28–32.

DOI: 10.4028/www.scientific.net/amm.660.28

Google Scholar

[29] L. Besra, T. Uchikoshi, T. S. Suzuki, & Y. Sakka, (2008). Bubble‐Free Aqueous Electrophoretic Deposition (EPD) by Pulse‐Potential Application. Journal of the American Ceramic Society, 91(10), 3154-3159.

DOI: 10.1111/j.1551-2916.2008.02591.x

Google Scholar

[30] J. Zhang, W. Li, S. Wang, & S. Wang, (2015). Electrophoretic deposition of La2Zr2O7 coating in non-aqueous media on Cf/SiC substrate. Surface and Coatings Technology, 278, 80-86.

DOI: 10.1016/j.surfcoat.2015.08.005

Google Scholar

[31] P. Amrollahi, J. S. Krasinski, R. Vaidyanathan, L. Tayebi, & D. Vashaee, (2015). Electrophoretic deposition (EPD): Fundamentals and applications from nano-to micro-scale structures. Handbook of Nanoelectrochemistry, Springer International Publishing Switzerland.

DOI: 10.1007/978-3-319-15207-3_7-1

Google Scholar

[32] S. R. Masrol, M. H. I. Ibrahim, S. Adnan, M. S. A. A. Tajudin, R. A. Raub, S. N. A. A. Razak, & S. N. F. M. Zain, (2016). Characteristics of linerboard and corrugated medium paper made from durian rinds chemi-mechanical pulp. In MATEC Web of Conferences (Vol. 51, p.02007). EDP Sciences.

DOI: 10.1051/matecconf/20165102007

Google Scholar

[33] H. Abdoli, & P. Alizadeh, (2012). Electrophoretic deposition of (Mn, Co) 3O4 spinel nano powder on SOFC metallic interconnects. Materials Letters, 80, 53-55.

DOI: 10.1016/j.matlet.2012.04.072

Google Scholar

[34] M. A. Azmi, N. A. A. Ismail, M. Rizamarhaiza, & H. Taib, (2016, July). Characterisation of silica derived from rice husk (Muar, Johor, Malaysia) decomposition at different temperatures. In AIP Conference Proceedings (Vol. 1756, No. 1, p.020005). AIP Publishing LLC.

DOI: 10.1063/1.4958748

Google Scholar

[35] P. Sarkar, & P. S. Nicholson, (1996). Electrophoretic deposition (EPD): mechanisms, kinetics, and application to ceramics. Journal of the American Ceramic Society, 79(8), 1987-2002.

DOI: 10.1111/j.1151-2916.1996.tb08929.x

Google Scholar

[36] N. A. Baharuddin, N. F. A. Rahman, H. A. Rahman, M. R. Somalu, M. A. Azmi, & J. Raharjo, (2020). Fabrication of high‐quality electrode films for solid oxide fuel cell by screen printing: A review on important processing parameters. International Journal of Energy Research, 44(11), 8296-8313.

DOI: 10.1002/er.5518

Google Scholar

[37] M. J. Santillán, A. Caneiro, N. Quaranta, & A. R. Boccaccini, (2009). Electrophoretic deposition of La0. 6Sr0. 4Co0. 8Fe0. 2O3− δ cathodes on Ce0. 9Gd0. 1O1. 95 substrates for intermediate temperature solid oxide fuel cell (IT-SOFC). Journal of the European Ceramic Society, 29(6), 1125-1132.

DOI: 10.1016/j.jeurceramsoc.2008.07.057

Google Scholar

[38] S. Molin, et al. 2017. Microstructural and Electrical Characterization of Mn-Co Spinel Protective Coatings for Solid Oxide Cell Interconnects., Journal of the European Ceramic Society 37(15): 4781–91.

DOI: 10.1016/j.jeurceramsoc.2017.07.011

Google Scholar

[39] K. H. Tan, H. A. Rahman, & H. Taib, (2019). Coating layer and influence of transition metal for ferritic stainless steel interconnector solid oxide fuel cell: A review. International Journal of Hydrogen Energy, 44(58), 30591-30605.

DOI: 10.1016/j.ijhydene.2019.06.155

Google Scholar

[40] N. Mustaffa, A. Khalid, M. F. Sies, H. Zakaria, & B. Manshoor, (2014). Preheated Biodiesel Derived from Vegetable Oil on Performance and Emissions of Diesel Engines: A Review. In Applied Mechanics and Materials (Vol. 465, pp.285-290). Trans Tech Publications Ltd.

DOI: 10.4028/www.scientific.net/amm.465-466.285

Google Scholar

[41] M. Norrizal, M. Fawzi, S. A. Osman, and M. M. Tukiman, (2019). Experimental Analysis of Liquid LPG Injection on the Combustion, Performance and Emissions in a Spark Ignition Engine., IOP Conference Series: Materials Science and Engineering 469 (2019): 1–12.

DOI: 10.1088/1757-899x/469/1/012033

Google Scholar