Crystallinity of Nanocellulose and its Application in Polymer Composites: A Short Review

Article Preview

Abstract:

There are various different types of nanocellulose such as nanofibrillated cellulose (NFC), nanocrystal cellulose (NCC), and nanocrystal sphere (NCS). Each nanocellulose contains ordered nanocrystallites and low-ordered nano domains (amorphous). Nanocellulose can be used in several different applications such as coating for a wearable sensor device, film for supercapacitors, flexible fire-resistant foams for architecture, manufactory, and aerospace. All of these were made, following some chemical and mechanical processes. Some nanocellulose has a highly crystalline structure that has the potential to improve mechanical properties for industrial applications. Therefore, the present review compiles the most recent information on nanocellulose crystallinity influence on the polymer composites. In this review, the crystallinity of nanocellulose from different sources is discussed. The preparation of several nanocrystals cellulose via chemical treatment, particularly cellulose hydrolysis are described. It can be concluded that , the cellulose crystalline structure as filler or reinforce was responsible for the improvement of polymer matrix properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

74-79

Citation:

Online since:

January 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W.H. Gao, K.F. Chen, R.D. Yang, F. Yang, W.J. Han, Properties of bacterial cellulose and its influence on the physical properties of paper, BioResources. 6 (2011) 144–153.

DOI: 10.15376/biores.6.1.144-153

Google Scholar

[2] V.A. Barbash, O. V. Yashchenko, O.A. Vasylieva, Preparation and application of nanocellulose from Miscanthus × giganteus to improve the quality of paper for bags, SN Appl. Sci. 2 (2020) 1–12.

DOI: 10.1007/s42452-020-2529-2

Google Scholar

[3] Sunkyu Park, J.O. Baker, M.E. Himmel, P.A. Parilla, D.K. Johnson, Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance, Biotechnol. Biofuels 2010. 3 (2010) 1–10.

DOI: 10.1186/1754-6834-3-10

Google Scholar

[4] G. Banvillet, G. Depres, N. Belgacem, J. Bras, Alkaline treatment combined with enzymatic hydrolysis for efficient cellulose nanofibrils production, Carbohydr. Polym. 255 (2021).

DOI: 10.1016/j.carbpol.2020.117383

Google Scholar

[5] M. Asem, D.N. Jimat, N.H.S. Jafri, W.M.F. Wan Nawawi, N.F.M. Azmin, M.F. Abd Wahab, Entangled cellulose nanofibers produced from sugarcane bagasse via alkaline treatment, mild acid hydrolysis assisted with ultrasonication, J. King Saud Univ. Eng. Sci. (2021).

DOI: 10.1016/j.jksues.2021.03.003

Google Scholar

[6] M. Ioelovich, Cellulose as a nanostructured polymer: A short review, BioResources. 3 (2008) 1403–1418.

DOI: 10.15376/biores.3.4.ioelovich

Google Scholar

[7] A. Jabbar, J. Hussain, A. Basit, M.S. Naeem, M. Usman, M. Karahan, Influence of Chemical Treatments and Nanocellulose Spray Coating on the Mechanical, Low Velocity Impact and Compression after Impact Performance of Nonwoven Jute Composites Influence of Chemical Treatments and Nanocellulose Spray Coating on the Mechanica, J. Nat. Fibers. 17 (2020) 1785–1797.

DOI: 10.1080/15440478.2019.1598918

Google Scholar

[8] M. Bouhoute, N. Taarji, L. de Oliveira Felipe, Y. Habibi, I. Kobayashi, M. Zahar, Microfibrillated cellulose from Argania spinosa shells as sustainable solid particles for O/W Pickering emulsions, Carbohydr. Polym. 251 (2021) 116990.

DOI: 10.1016/j.carbpol.2020.116990

Google Scholar

[9] B. Amalia, C. Imawan, A. Listyarini, Effect of nanofibril cellulose isolated from pineapple leaf on the mechanical properties of chitosan film, AIP Conf. Proc. 2023 (2018).

DOI: 10.1063/1.5064031

Google Scholar

[10] S. Eartrakulpaiboon, N. Tonanon, Preparation of microcrystalline cellulose from dissolving cellulose by cryo-crushing and acid hydrolysis, IEEE Sens. J. (2015) 188–190.

DOI: 10.1109/ticst.2015.7369359

Google Scholar

[11] D. Bitounis, G. Pyrgiotakis, D. Bous, P. Demokritou, NanoImpact Dispersion preparation , characterization , and dosimetric analysis of cellulose nano- fi brils and nano-crystals : Implications for cellular toxicological studies, 15 (2019).

DOI: 10.1016/j.impact.2019.100171

Google Scholar

[12] X. Cao, Y. Wang, H. Chen, J. Hu, L. Cui, Preparation of different morphologies cellulose nanocrystals from waste cotton fibers and its effect on PLLA / PDLA composites films, Compos. Part B. 217 (2021) 108934.

DOI: 10.1016/j.compositesb.2021.108934

Google Scholar

[13] Y.W. Chen, H.V. Lee, Revalorization of selected municipal solid wastes as new precursors of green,nanocellulose via a novel one-pot isolation system: A source perspective, Int. J. Biol. Macromol. 107 (2018) 78–92.

DOI: 10.1016/j.ijbiomac.2017.08.143

Google Scholar

[14] E. Fortunati, M. Peltzer, I. Armentano, L. Torre, A. Jiménez, J.M. Kenny, Effects of modified cellulose nanocrystals on the barrier and migration properties of PLA nano-biocomposites, Carbohydr. Polym. 90 (2012) 948–956.

DOI: 10.1016/j.carbpol.2012.06.025

Google Scholar

[15] A.D. French, M. Santiago Cintrón, Cellulose polymorphy, crystallite size, and the Segal Crystallinity Index, Cellulose. 20 (2013) 583–588.

DOI: 10.1007/s10570-012-9833-y

Google Scholar

[16] L. Segal, J.J. Creely, A.E. Martin, C.M. Conrad, An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer, Text. Res. J. 29 (1959) 786–794.

DOI: 10.1177/004051755902901003

Google Scholar

[17] U.U. Zakiyya, M. Masruri, Z. Ningsih, A. Srihardyastutie, Sonication-Assisted pine cone flower cellulose hydrolysis using formic acid, IOP Conf. Ser. Mater. Sci. Eng. 833 (2020).

DOI: 10.1088/1757-899x/833/1/012001

Google Scholar

[18] Z.D. Nasihin, M. Masruri, W. Warsito, A. Srihardyastutie, Preparation of Nanocellulose Bioplastic with a Gradation Color of Red and Yellow, IOP Conf. Ser. Mater. Sci. Eng. 833 (2020).

DOI: 10.1088/1757-899x/833/1/012078

Google Scholar

[19] C. Orrabalis, D. Rodríguez, L.G. Pampillo, C. Londoño-Calderón, M. Trinidad, R. Martínez-García, Characterization of nanocellulose obtained from cereus forbesii (a South american cactus), Mater. Res. 22 (2019) 1–10.

DOI: 10.1590/1980-5373-mr-2019-0243

Google Scholar

[20] C. Vivian Abiaziem, A. Bassey Williams, A. Ibijoke Inegbenebor, C. Theresa Onwordi, C.O. Ehi-Eromosele, L. Felicia Petrik, Preparation and Characterisation of Cellulose Nanocrystal from Sugarcane Peels by XRD, SEM and CP/MAS 13C NMR, J. Phys. Conf. Ser. 1299 (2019).

DOI: 10.1088/1742-6596/1299/1/012123

Google Scholar

[21] E. Jin, J. Guo, F. Yang, Y. Zhu, J. Song, Y. Jin, On the polymorphic and morphological changes of cellulose nanocrystals (CNC-I) upon mercerization and conversion to CNC-II, Carbohydr. Polym. 143 (2016) 327–335.

DOI: 10.1016/j.carbpol.2016.01.048

Google Scholar

[22] M. Umashankaran, S. Gopalakrishnan, Characterization of Bio-fiber from Pongamiapinnata L. Bark as Possible Reinforcement of Polymer Composites, J. Nat. Fibers. 18 (2021) 823–833.

DOI: 10.1080/15440478.2019.1658254

Google Scholar

[23] H. Kurita, R. Ishigami, C. Wu, F. Narita, Experimental Evaluation of Tensile Properties of Epoxy Composites with Added Cellulose Nanofiber Slurry, Strength Mater. 52 (2020) 798–804.

DOI: 10.1007/s11223-020-00233-3

Google Scholar

[24] R. Kumar, B. Rai, G. Kumar, A Simple Approach for the Synthesis of Cellulose Nanofiber Reinforced Chitosan/PVP Bio Nanocomposite Film for Packaging, J. Polym. Environ. 27 (2019) 2963–2973.

DOI: 10.1007/s10924-019-01588-8

Google Scholar

[25] B. Zhang, C. Huang, H. Zhao, J. Wang, C. Yin, L. Zhang, Effects of cellulose nanocrystals and cellulose nanofibers on the structure and properties of polyhydroxybutyrate nanocomposites, Polymers (Basel). 11 (2019) 1–21.

DOI: 10.3390/polym11122063

Google Scholar