[1]
V.I. Altukhov, A.V. Sankin, R.Kh. Dadashev, A.S. Sigov, N.I. Kargin, G. D. Kardashov Technologies for producing wide-gap materials, heterostructures, diodes based on silicon carbide and calculation of their characteristics,. Grozny, Book Publishing House, (2019).
Google Scholar
[2]
Safaraliev G.K. Solid Solutions Based on Silicon Carbide, Moscow, (2011).
Google Scholar
[3]
Safaraliev G.K., Tairov Yu.M., Tsvetkov V.F. Wide-gap solid solutions (SiC) 1-x (AlN) x. Physics and technology of semiconductors, 25(8), (1993).
Google Scholar
[4]
A.S. Gusev, S.M. Ryndya, N.I. Kargin, E.A. Bondarenko. Low-temperature synthesis of thin films of silicon carbide by the method of vacuum laser ablation and investigation of their properties. Surface. X-ray, synchrotron and neutron research, 5, (2010), 18-22.
DOI: 10.1134/s1027451010030031
Google Scholar
[5]
N. I. Kargin, G. K. Safaraliev, N.A. Kharlamov, G. D. Kuznetsov, S.M. Ryndya. Kinetic Features of Solid Solution Films (SiC) 1-x (AlN) x by Ion Sputtering. Proceedings of universities. North Caucasian region. Technical science. 6, (2013), 118-121.
Google Scholar
[6]
V.I. Lebedev Physics of phase transitions in defective and small-sized crystals. Stavropol: SevKavGTU, (2008).
Google Scholar
[7]
V.I. Altukhov, R.Kh. Dadashev, A.V. Sankin. Obtaining and modeling the properties of nanostructured materials and I - V characteristics of SiC-based Schottky diodes. Grozny, NCFU, (2000).
Google Scholar
[8]
N.I. Kargin, D.V. Gromov, G. D. Kuznetsov, M.M. Sins. Influence of irradiation on the device characteristics of transistor structures based on AlGaN / GaN. Bulletin of the National Research Nuclear University MEPhI,, 3(1), (2014), 68-70.
Google Scholar
[9]
Z. Shen, Xu, W., Xu, Y., Huang, H., Lin, J., You, T., Ye, J., Ou, X. The effect of oxygen annealing on characteristics of β-Ga2O3 solar-blind photodetectors on SiC substrate by ion-cutting process. Journal of Alloys and Compounds, 889, (2022), 161743.
DOI: 10.1016/j.jallcom.2021.161743
Google Scholar
[10]
V.A. Krasnov, S.Y. Yerochin, O.M. Demenskyi, Express method of electro-physical parameters extraction for power Schottky diodes. Solid-State Electronics, 186, (2021), 108169.
DOI: 10.1016/j.sse.2021.108169
Google Scholar
[11]
Y. Yu, T. Wang, X. Chen, L. Zhang, Y. Wang, Y. Niu, J. Yu, H. Ma, X. Li, F. Liu, G. Deng, Z. Shi, B. Zhang, X. Wang, Y. Zhang, Demonstration of epitaxial growth of strain-relaxed GaN films on graphene/SiC substrates for long wavelength light-emitting diodes. Light: Science and Applications, 10 (1), (2021), 117.
DOI: 10.1038/s41377-021-00560-3
Google Scholar
[12]
I.A. Khramtsov, D.Y. Fedyanin, Single-Photon Sources Based on Novel Color Centers in Silicon Carbide P–I–N Diodes: Combining Theory and Experiment. Nano-Micro Letters, 13 (1), (2021), 83.
DOI: 10.1007/s40820-021-00600-y
Google Scholar
[13]
A. Siddiqui, M. Usman, Radiation tolerance comparison of silicon and 4H–SiC Schottky diodes. Materials Science in Semiconductor Processing, 135, (2021), 106085.
DOI: 10.1016/j.mssp.2021.106085
Google Scholar
[14]
K.-H. Chen, F. Cao, Z.-Y. Yang, X.-J. Li, J.-Q. Yang, D.-K. Shi, Y. Wang, Improved interface characteristics of Mo/4H-SiC schottky contact. Solid-State Electronics, 185, (2021), 108152.
DOI: 10.1016/j.sse.2021.108152
Google Scholar
[15]
S. Shangguan, Y. Ma, J. Han, Y. Cui, Y. Wang, R. Chen, Y. Liang, X. Zhu, Y. Li, Single event effects of SiC diode demonstrated by pulsed-laser two photon absorption. Microelectronics Reliability, 125, (2021), 114364.
DOI: 10.1016/j.microrel.2021.114364
Google Scholar
[16]
L. Zheng, X. Han, Z. An, R.P. Kandula, K. Kandasamy, M. Saeedifard, D. Divan, SiC-based 5-kV universal modular soft-switching solid-state transformer (M-S4T) for medium-voltage DC microgrids and distribution grids. IEEE Transactions on Power Electronics, 36 (10), (2021) 9380936.
DOI: 10.1109/tpel.2021.3066908
Google Scholar
[17]
R. Bernat, L. Bakrač, V. Radulović, L. Snoj, T. Makino, T. Ohshima, Ž. Pastuović, I. Capan, 4h-sic schottky barrier diodes for efficient thermal neutron detection. Materials, 14 (17), (2021), 5105.
DOI: 10.3390/ma14175105
Google Scholar
[18]
Y. Dai, J. Dang, Q. Ye, Z. Lu, S. Pu, X. Lei, S. Zhao, Y. Zhang, C. Liao, H. Zhang, W. Zhao, Study on electric field modulation and avalanche enhancement of sic/gan impatt diode. Electronics (Switzerland), 10 (17), (2021), 2180.
DOI: 10.3390/electronics10172180
Google Scholar
[19]
K. Wolski, P. Grzejszczak, M. Szymczak, R. Barlik, Closed-form formulas for automated design of SiC-based phase-shifted full bridge converters in charger applications. Energies, 14 (17), (2021), 5380.
DOI: 10.3390/en14175380
Google Scholar
[20]
A. Arvanitopoulos, F. Li, M.R. Jennings, S. Perkins, K. Gyftakis, P. Mawby, M. Antoniou, N. Lophitis, Experimental and Physics-Based Study of the Schottky Barrier Height Inhomogeneity and Associated Traps Affecting 3C-SiC-on-Si Schottky Barrier Diodes. IEEE Transactions on Industry Applications, 57 (5), (2021), 9448386.
DOI: 10.1109/tia.2021.3087667
Google Scholar
[21]
Y. Jiang, Y. Shen, L. Shillaber, C. Jiang, T. Long, Split Parallel Semibridge Switching Cells for Full-Power-Range Efficiency Improvement. IEEE Transactions on Power Electronics, 36 (9), (2021), 9382839.
DOI: 10.1109/tpel.2021.3067819
Google Scholar
[22]
W. Lin, M. Wang, R. Yin, J. Wei, C.P. Wen, B. Xie, Y. Hao, B. Shen, Hydrogen-Modulated Step Graded Junction Termination Extension in GaN Vertical p-n Diodes. IEEE Electron Device Letters, 42 (8), (2021), 9461723.
DOI: 10.1109/led.2021.3091335
Google Scholar
[23]
B. Wang, M. Xiao, J. Knoll, C. Buttay, K. Sasaki, G.-Q. Lu, C. Dimarino, Y. Zhang, Low Thermal Resistance (0.5 K/W) GaO Schottky Rectifiers with Double-Side Packaging. IEEE Electron Device Letters, 42 (8), (2021), 9453809.
DOI: 10.1109/led.2021.3089035
Google Scholar
[24]
M. Barbouche, R. Benabderrahmane Zaghouani, N.E. Ben Ammar, V. Aglieri, H. Nasser, R. Turan, H. Ezzaouia, Effect of amorphous SiC layer on electrical and optical properties of Al/a-SiC/c-Si Schottky diode for optoelectronic applications. Journal of Materials Science: Materials in Electronics, 32 (15), (2021), 20598-20611.
DOI: 10.1007/s10854-021-06570-6
Google Scholar