[1]
I. S. Yalcin, A. L.Saffar, R. D. Tomlinson, Shacecharge-limited current in n- type CuInSe2. J. Appl. Phys. 52(9), (1961) 5857-5858.
Google Scholar
[2]
M. Gorska, J. J. Loferski, B. Rossler, The utilization of I-III-VI6 ternfrycompounds semiconductors in solar celles. Phys. Semiconduct. Compound. Proc. 10. Conference of April 22 – 30. Wroclaw. (1980-1981) pp.286-289.
Google Scholar
[3]
J. Gonzales, J. Alberto Torres, G. Sancher Peres, Photoconductivity spectrum of p-type CuInS2singl crystals. Phys. Status solidi. 69 (1), (1982) k 37-k 41.
Google Scholar
[4]
К. W. Mitchell, Ргос. IX Е. С. Photovolt. Solar Energy Confer. Freiburg. (2016) pp.292-293.
Google Scholar
[5]
J. Parkers, R. D. Tomlinson, M. J. Hampshire, The fabrication of p – and n – type single crystals of CuInSe2. J. of Cryst. Growth. 20 (4), (2003) 315 – 318.
Google Scholar
[6]
S. Wagner, The utilization of ternary compounds. Inst. Phys. Conf. Ser. 35, (1977) 205-215.
Google Scholar
[7]
B. Tell, J. L. Shay, H. M. Kasper, Room-temperature electrical properties of ten I-III-VI2 semiconductors. J. Appl. Phys. 43(5), (2002) 2469 – 2470.
DOI: 10.1063/1.1661532
Google Scholar
[8]
B. Tell, H. M. Kasper, Electrical properties of AgInSe2. J. Applied Physics. 45 (12), (2004), 5367-5370.
Google Scholar
[9]
G. A. Medvedkin, P. H. Bekimbetov, ZHTF, 57 (5), (2017) 960-964.
Google Scholar
[10]
G. A. Medvedkin, Y. V Rud, M. A. Tairov, FTP. 23 (5), (2007) 869-872.
Google Scholar
[11]
A. K. Matiev Phase equilibria and electron-opticalproperties of T1B3C62-A1B3C62 systems (А-Сu, Ag; В-Iп, Ga; С-S, Se). The research paper for the competition. Physics and Mathematics. UlSU, (2005).
Google Scholar
[12]
A. K. Matiev Temperature Dependence of the Absorption Edge in CuInSe2.Abstracts 17th International Conference on Ternary and Multinary Compounds. ISTMC-17. Baku, (2010) P2-4.
Google Scholar
[13]
A. K. Matiev, V. V. Kodin, Mechanisms of Charge Tran-sfer and Magnetoresistance in CuInSe2. Bulletin of Russion Academy of Science: Physics. 74 (9), (2010) 1326-1328.
DOI: 10.3103/s1062873810090418
Google Scholar
[14]
G. A. Medvedkin, G. A. Ambrazyavicius, A. A. Yakovenko, Surface. Physics, Chemistry, Mechanics. 2, (2018) 81-87.
Google Scholar
[15]
D. Cahen, R. Noufi. Applied Physics Lett. 54 (6), (2018) 558-560.
Google Scholar
[16]
D. Abou-Ras, N. Schäfer, T. Rissom, M.N. Kelly, J. Haarstrich, C. Ronning, G.S. Rohrer, A.D. Rollett, Grain-boundary character distribution and correlations with electrical and optoelectronic properties of CuInSe2 thin films. Acta Materialia, 118, (2016), 244-252.
DOI: 10.1016/j.actamat.2016.07.042
Google Scholar
[17]
X. Ji, L.J. Wang, J.Y. Teng, Y.M. Mi, C.M. Zhang, Effect of sputtering time processes on phase transformation, optical and photoelectrical properties of CuInSe2 film solar cells. Journal of Optoelectronics and Advanced Materials, 17 (11-12), (2015), 1710-1715.
Google Scholar
[18]
D. Abou-Ras, N. Schäfer, N. Baldaz, S. Brunken, C. Boit, Electron-beam-induced current measurements with applied bias provide insight to locally resolved acceptor concentrations at p-n junctions. AIP Advances, 5 (7), (2015), 077191.
DOI: 10.1063/1.4928097
Google Scholar
[19]
J. Lee, S.-H. Lee, J.-S. Hahn, H.-J. Sun, G. Park, J. Shim, Effects of solvents on the synthesis of CuInSe2 nanoparticles for thin film solar cells. Journal of Nanoscience and Nanotechnology, 14 (12), (2014) 9313-9318.
DOI: 10.1166/jnn.2014.10146
Google Scholar
[20]
J.G. Albornoz, Rojas L., J.M. Merino, M. León, Structural, thermal and electrical properties of the semiconductor system Ag(1-x)CuxInSe2. Journal of Physics and Chemistry of Solids, 75 (1), (2014), 1-7.
DOI: 10.1016/j.jpcs.2013.08.003
Google Scholar
[21]
S. Ahn, Y.J. Choi, K. Kim, Y.-J. Eo, A. Cho, J. Gwak, J.H. Yun, K. Shin, S.K. Ahn, K. Yoon, Amorphous Cu-In-S nanoparticles as precursors for CuInSe2 thin-film solar cells with a high efficiency. ChemSusChem, 6 (7), (2013), 1282-1287.
DOI: 10.1002/cssc.201200894
Google Scholar
[22]
M.-S. Qin, C.-Y. Yang, Y.-M. Wang, L.-D. Chen, F.-Q. Huang, Temperature dependence of microstructure and physical properties of CuInSe 2 prepared by rapid synthesis reaction. Materials Research Bulletin, 47 (11), (2012), 3908-3911.
DOI: 10.1016/j.materresbull.2012.06.073
Google Scholar
[23]
H. Tecimer, S. Aksu, H. Uslu, Y. Atasoy, E. Bacaksiz, Ş. Altindal, Schottky diode properties of CuInSe 2 films prepared by a two-step growth technique. Sensors and Actuators, A: Physical, 185, (2012), 73-81.
DOI: 10.1016/j.sna.2012.07.021
Google Scholar
[24]
L.P. Deshmukh, R.V. Suryawanshi, E.U. Masumdar, M. Sharon, Cu 1-xIn xSe 2 thin films: Deposition by spray pyrolysis and characteristics. Solar Energy, 86 (6), (2012), 1910-1919.
DOI: 10.1016/j.solener.2012.02.033
Google Scholar
[25]
P. Fan, J.-R. Chi, G.-X. Liang, Z.-H. Zheng, D.-P. Zhang, X.-M. Cai, D.-M. Li, T.-B. Chen, Preparation and characterization of CIGS thin films by depositing quaternary layers. Journal of Shenzhen University Science and Engineering, 29 (2), (2012), 118-122.
DOI: 10.3724/sp.j.1249.2012.02118
Google Scholar