[1]
X.-B. Dang, M. Wan, W. Zhang, Y. Yang, Chatter analysis and mitigation of milling of the pocket-shaped thin-walled workpieces with viscous fluid, Int. J. of Mechanical Sciences. 194 (2021) 262-271.
DOI: 10.1016/j.ijmecsci.2020.106214
Google Scholar
[2]
Z. Zhang, H.G. Li, G. Meng, S. Ren, Milling chatter suppression in viscous fluid: A feasibility study, Int. J. of Machine Tools and Manufacture. 120 (2017) 20-26.
DOI: 10.1016/j.ijmachtools.2017.02.005
Google Scholar
[3]
R. Madoliat, S. Hayati, A.G. Ghalebahman, Investigation of chatter suppression in slender endmill via a frictional damper, Scientia Iranica B. 18(5) (2011) 1069-1077.
DOI: 10.1016/j.scient.2011.08.008
Google Scholar
[4]
W. Gafsi, R. Chaari, N. Masmoudi, MT. Khabou, M. Haddar, Modeling of a passive absorber in milling tool machine, Applied Acoustics. 128 (2017) 94-110.
DOI: 10.1016/j.apacoust.2017.06.023
Google Scholar
[5]
H. Moradi, G. Vossoughi, M. Behzad, MR. Movahhedy, Vibration absorber design to suppress regenerative chatter in nonlinear milling process: Application for machining of cantilever plates, Applied Mathematical Modelling. 39(2) (2015) 600-620.
DOI: 10.1016/j.apm.2014.06.010
Google Scholar
[6]
H. Moradi, MR. Movahhedy, G. Vossoughi, Tunable vibration absorber for improving milling stability with tool wear and process damping effects, Mechanism and Machine Theory. 52 (2012) 59-77.
DOI: 10.1016/j.mechmachtheory.2012.01.009
Google Scholar
[7]
H. Yuan, M. Wan, Y. Yang, Design of a tunable mass damper for mitigating vibrations in milling of cylindrical parts, Chinese Journal of Aeronautic. 32(3) (2019) 748-758.
DOI: 10.1016/j.cja.2018.12.002
Google Scholar
[8]
F. Tehranizadeh, E. Budak, Design of serrated end mills for improved productivity, Procedia CIRP 58 (2017) 493-498.
DOI: 10.1016/j.procir.2017.03.256
Google Scholar
[9]
L. Urena, E. Ozturk, N. Sims, Stability of variable helix milling: model validation using scaled experiments, Procedia CIRP. 77 (2018) 449-452.
DOI: 10.1016/j.procir.2018.08.277
Google Scholar
[10]
G. Stepan, J. Munoa, T. Insperger, M. Surico, D. Bachrathy, Z. Dombovari, Cylindrical milling tools: Comparative real case study for process stability, CIRP Annals – Manufacturing Technology. 63 (2014) 385-388.
DOI: 10.1016/j.cirp.2014.03.137
Google Scholar
[11]
V.G. Shalamov, Vybor konstruktivnykh parametrov tsilindricheskikh frez, Izv. vuzov. Mashinostroyeniye. 4 (1981) 152-156.
Google Scholar
[12]
C. Wang, X. Zhang, H. Cao, X. Chen, J. Xiang, Milling stability prediction and adaptive chatter suppression considering helix angle and bending, Int. J. Adv. Manuf. Technol. 95 (2018), 3665-3677.
DOI: 10.1007/s00170-017-1389-4
Google Scholar
[13]
G. Totis, P. Albertelli, M. Torta, M. Sortino, M. Monno. Upgraded stability analysis of milling operations by means of advanced modeling of tooling system bending, Int. J. Mach. Tools Manuf. 113 (2017) 19-34.
DOI: 10.1016/j.ijmachtools.2016.11.005
Google Scholar
[14]
L.T. Tunc, Y. Mohammadi, E. Budak, Destabilizing effect of low frequency modes on process damped stability of multi-mode milling systems, Mech. Syst. Sig. Process. 111 (2018) 423-441.
DOI: 10.1016/j.ymssp.2018.03.051
Google Scholar
[15]
D.Yu. Topolov, Stable Milling, Russian Engineering Research. 40(12) (2020) 1020-1023.
Google Scholar