Effect of Elements of the Cutting Conditions on the Amplitude of Vibration during End Milling

Article Preview

Abstract:

The choice of cutting mode elements in end milling has a significant effect on machining performance. However, an increase in these parameters leads to an increase in cutting force and vibration amplitude. Therefore, the designation of the elements of the cutting mode must be carried out taking into account the dynamic phenomena accompanying milling. The article shows the influence of the depth of cut on the amplitudes of forced vibrations. The choice of the optimal values of the cutting mode during end milling is proposed to ensure the minimum vibration amplitude.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

187-192

Citation:

Online since:

February 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X.-B. Dang, M. Wan, W. Zhang, Y. Yang, Chatter analysis and mitigation of milling of the pocket-shaped thin-walled workpieces with viscous fluid, Int. J. of Mechanical Sciences. 194 (2021) 262-271.

DOI: 10.1016/j.ijmecsci.2020.106214

Google Scholar

[2] Z. Zhang, H.G. Li, G. Meng, S. Ren, Milling chatter suppression in viscous fluid: A feasibility study, Int. J. of Machine Tools and Manufacture. 120 (2017) 20-26.

DOI: 10.1016/j.ijmachtools.2017.02.005

Google Scholar

[3] R. Madoliat, S. Hayati, A.G. Ghalebahman, Investigation of chatter suppression in slender endmill via a frictional damper, Scientia Iranica B. 18(5) (2011) 1069-1077.

DOI: 10.1016/j.scient.2011.08.008

Google Scholar

[4] W. Gafsi, R. Chaari, N. Masmoudi, MT. Khabou, M. Haddar, Modeling of a passive absorber in milling tool machine, Applied Acoustics. 128 (2017) 94-110.

DOI: 10.1016/j.apacoust.2017.06.023

Google Scholar

[5] H. Moradi, G. Vossoughi, M. Behzad, MR. Movahhedy, Vibration absorber design to suppress regenerative chatter in nonlinear milling process: Application for machining of cantilever plates, Applied Mathematical Modelling. 39(2) (2015) 600-620.

DOI: 10.1016/j.apm.2014.06.010

Google Scholar

[6] H. Moradi, MR. Movahhedy, G. Vossoughi, Tunable vibration absorber for improving milling stability with tool wear and process damping effects, Mechanism and Machine Theory. 52 (2012) 59-77.

DOI: 10.1016/j.mechmachtheory.2012.01.009

Google Scholar

[7] H. Yuan, M. Wan, Y. Yang, Design of a tunable mass damper for mitigating vibrations in milling of cylindrical parts, Chinese Journal of Aeronautic. 32(3) (2019) 748-758.

DOI: 10.1016/j.cja.2018.12.002

Google Scholar

[8] F. Tehranizadeh, E. Budak, Design of serrated end mills for improved productivity, Procedia CIRP 58 (2017) 493-498.

DOI: 10.1016/j.procir.2017.03.256

Google Scholar

[9] L. Urena, E. Ozturk, N. Sims, Stability of variable helix milling: model validation using scaled experiments, Procedia CIRP. 77 (2018) 449-452.

DOI: 10.1016/j.procir.2018.08.277

Google Scholar

[10] G. Stepan, J. Munoa, T. Insperger, M. Surico, D. Bachrathy, Z. Dombovari, Cylindrical milling tools: Comparative real case study for process stability, CIRP Annals – Manufacturing Technology. 63 (2014) 385-388.

DOI: 10.1016/j.cirp.2014.03.137

Google Scholar

[11] V.G. Shalamov, Vybor konstruktivnykh parametrov tsilindricheskikh frez, Izv. vuzov. Mashinostroyeniye. 4 (1981) 152-156.

Google Scholar

[12] C. Wang, X. Zhang, H. Cao, X. Chen, J. Xiang, Milling stability prediction and adaptive chatter suppression considering helix angle and bending, Int. J. Adv. Manuf. Technol. 95 (2018), 3665-3677.

DOI: 10.1007/s00170-017-1389-4

Google Scholar

[13] G. Totis, P. Albertelli, M. Torta, M. Sortino, M. Monno. Upgraded stability analysis of milling operations by means of advanced modeling of tooling system bending, Int. J. Mach. Tools Manuf. 113 (2017) 19-34.

DOI: 10.1016/j.ijmachtools.2016.11.005

Google Scholar

[14] L.T. Tunc, Y. Mohammadi, E. Budak, Destabilizing effect of low frequency modes on process damped stability of multi-mode milling systems, Mech. Syst. Sig. Process. 111 (2018) 423-441.

DOI: 10.1016/j.ymssp.2018.03.051

Google Scholar

[15] D.Yu. Topolov, Stable Milling, Russian Engineering Research. 40(12) (2020) 1020-1023.

Google Scholar