[1]
M. Kaur, K. Singh, Review on titanium and titanium based alloys as biomaterials for orthopaedic applications, Materials Science and Engineering: C 102 (2019) 884-862.
DOI: 10.1016/j.msec.2019.04.064
Google Scholar
[2]
J. Alipal, N.A.S.M. Pu'ad, N.H.M. Nayan, N. Sahari, H.Z. Abdullah, M.I. Idris, T.C. Lee, An updated review on surface functionalisation of titanium and its alloys for implants applications, Materials Today: Proceedings 42 (1) (2021) 270-282.
DOI: 10.1016/j.matpr.2021.01.499
Google Scholar
[3]
E.M. Mokhov, A.V. Zherebchenko, Biologically active surgical sutures materials (literature review), Upper Volga Medical Journal 10 (4) (2012) 21-28.
Google Scholar
[4]
F.A. Shah, M. Trobos, P. Thomsen, A. Palmquist, Commercially pure titanium (CP-Ti) versus titanium alloy (Ti6Al4V) materials as bone anchored implants — Is one truly better than the other?, Materials Science and Engineering: C 62 (2016) 960-966.
DOI: 10.1016/j.msec.2016.01.032
Google Scholar
[5]
L.-Y. Chen, Y.-W. Cui, L.-C. Zhang, Recent Development in beta titanium alloys for biomedical applications, Metals 10 (2020) 1139.
DOI: 10.3390/met10091139
Google Scholar
[6]
H. Chouirfa, H. Bouloussa, V. Migonney, C. Falentin-Daudré, Review of titanium surface modification techniques and coatings for antibacterial applications, Acta Biomaterialia 83 (2019) 37-54.
DOI: 10.1016/j.actbio.2018.10.036
Google Scholar
[7]
J.C.M. Souza, M.B. Sordi, M. Kanazawa, S. Ravindran, B. Henriques, F.S. Silva, C. Aparicio, L.F. Cooper, Nano-scale modification of titanium implant surfaces to enhance osseointegration, Acta Biomaterialia 94 (2019) 112-131.
DOI: 10.1016/j.actbio.2019.05.045
Google Scholar
[8]
M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia, Ti based biomaterials, the ultimate choice for orthopaedic implants – A review, Progress in Materials Science 54 (3) (2009) 397-425.
DOI: 10.1016/j.pmatsci.2008.06.004
Google Scholar
[9]
V.A. Arshakyan, V.E. Gyunter, S.G. Shtofin, P.G. Fedorov, V.A. Samartsev, D.V. Morozov, Ways of improvement of surgical sutural material, Acta Biomedica Scientifica 2 (6) (2017) 193-197.
DOI: 10.12737/article_5a0a910977eca1.04637486
Google Scholar
[10]
V.A. Kolmykov, M.Yu. Glazunova, A.G. Zalazinsky, A.A. Shabashov, Drawing of thin wire from titanium for suture materials, Non-ferrous Metals 3 (2002) 66-69 (In Russian).
Google Scholar
[11]
А.N. Monogenov, T.V. Podoselnikova, D.E. Kulbakin, K. Ji-Soon, S.V. Gunther, Strength and plastic properties of thin wire made of TN-10 brand alloy, Russian Physics Journal 57 (6/2) (2014) 79-83 (In Russian).
Google Scholar
[12]
S.L. Semiatin, V. Seetharaman, I. Weiss, The thermomechanical processing of alpha/beta titanium alloys, JOM 49 (1997) 33-39.
DOI: 10.1007/bf02914711
Google Scholar
[13]
S.V. Byvaltsev, Multi-criteria optimization of metal pressure processes using experiment planning methods, IOP Conf. Series: Materials Science and Engineering 966 (2020) 012122.
DOI: 10.1088/1757-899x/966/1/012122
Google Scholar
[14]
S.V. Byvaltsev, Damage modeling during hydromechanical extrusion, Materials Today: Proceedings 38 (4) (2021) 2035-2037.
DOI: 10.1016/j.matpr.2020.10.039
Google Scholar
[15]
A. Issariyapat, P. Visuttipitukul, T. Song, J. Umeda, M. Qian, K. Kondoh, Strength-ductility improvement of extruded Ti-(N) materials using pure Ti powder with high nitrogen solution, Materials Science and Engineering A 779 (2020)139136.
DOI: 10.1016/j.msea.2020.139136
Google Scholar
[16]
N.M. Pultsin, Interaction of titanium with gases, Metallurgy, Moscow, 1960 (In Russian).
Google Scholar
[17]
V.N. Gridnev, O.M. Ivasishin, S.P. Oshkaderov, Physical foundations of high-speed heating of titanium alloys, Naukova Dumka, Kiev, 1986 (In Russian).
Google Scholar
[18]
K. Otsuka, X. Ren, Physical metallurgy of Ti–Ni-based shape memory alloys, Progress in Materials Science 50 (2005) 511–678.
DOI: 10.1016/j.pmatsci.2004.10.001
Google Scholar
[19]
V.E. Gunther, et al., Titanium nickelide. Medical material of a new generation, MITs Publishing House, Tomsk, 2006 (In Russian).
Google Scholar
[20]
E.W. Collings, The Physical Metallurgy of Titanium Alloys, ASM International: Cleveland, OH, USA, (1989).
Google Scholar
[21]
T. Nawaya, W. Beck, A. von Hehl, Tensile properties of α-titanium alloys at elevated temperatures, MATEC Web of Conferences 321 (2020) 04016.
DOI: 10.1051/matecconf/202032104016
Google Scholar
[22]
Y. Chong, M. Poschmann, R. Zhang, S. Zhao, M.S. Hooshmand, E. Rothchild, D.L. Olmsted, J.W. Morris Jr,D.C. Chrzan, M. Asta, A.M. Minor, Mechanistic basis of oxygen sensitivity in titanium, Science advances 6(43) (2020).
DOI: 10.1126/sciadv.abc4060
Google Scholar
[23]
W. Joost, S. Ankem, M. Kuklja, A modified embedded atom method potential for the titanium–oxygen system, Modelling and Simulation in Materials Science and Engineering 23 (2015) 015006.
DOI: 10.1088/0965-0393/23/1/015006
Google Scholar
[24]
M.L. Wasz, F.R. Brotzen, R.B. McLellan, A.J. Griffin, Effect of oxygen and hydrogen on mechanical properties of commercial purity titanium, International Materials Reviews 41 (1) (1996) 1-12.
DOI: 10.1179/imr.1996.41.1.1
Google Scholar
[25]
Q. Bignon, F. Martin, Q. Auzoux, Y. Wouters, Hydrogen impact on the mechanical properties of three titanium alloys, 3rd International conference on metals and hydrogen, Gand, Belgium (2018).
Google Scholar
[26]
I. Weiss, S.L. Semiatin, Thermomechanical processing of beta titanium alloys—an overview, Materials Science and Engineering: A 243 (1–2) (1998) 46-65.
DOI: 10.1016/s0921-5093(97)00783-1
Google Scholar
[27]
D. Cascadan, C.R. Grandini, Effect of Oxygen in the Structure, Microstructure and Mechanical Properties of Ti-xNi (x = 5, 10, 15 and 20 wt%) Alloys, Metals 10 (11) (2020) 1424.
DOI: 10.3390/met10111424
Google Scholar
[28]
H. Conrad, Effect of interstitial solutes on the strength and ductility of titanium, Progress in Materials Science 26 (2–4) (1981) 123-403.
DOI: 10.1016/0079-6425(81)90001-3
Google Scholar
[29]
P.A.B. Kuroda, F.F. Quadros, R.O. Araújo, C.R.M. Afonso, C.R. Grandini, Effect of thermomechanical treatments on the phases, microstructure, microhardness and young's modulus of Ti-25Ta-Zr alloys, Materials (Basel) 12(19) (2019) 3210.
DOI: 10.3390/ma12193210
Google Scholar
[30]
H. Wu, G.-H. Fan, M. Huang, L. Geng, X.P. Cui, H. Xie, Deformation behavior of brittle/ductile multilayered composites under interface constraint effect, International Journal of Plasticity 89 (2016) 96-109.
DOI: 10.1016/j.ijplas.2016.11.005
Google Scholar
[31]
R.M. Lerinman, G.V. Murzaeva, Structural changes occurring during thermal and mechanical-thermal treatment of high-strength β-titanium alloys, in: Structure and mechanical properties of metals and alloys, UC AN SSSR, Sverdlovsk, 1975, pp.90-107 (In Russian).
Google Scholar
[32]
A.A. Popov, D.A. Pumpyanskiy, V.A. Beloglazov, Investigation of phase and structural transformations in titanium alloy TS6 with the original polygonized structure, Physics of metals and metal science 2 (1991) 150-156 (In Russian).
Google Scholar
[33]
D.-S. Kang, K.-j. Lee, E.-p. Kwon, T. Tsuchiyama, S. Toshihiro, Variation of work hardening rate by oxygen contents in pure titanium alloy, Materials Science and Engineering: A 632 (2015) 074.
DOI: 10.1016/j.msea.2015.02.074
Google Scholar
[34]
M. Yan, W. Xu, M.S. Dargusch, H.P. Tang, M. Brandt, M. Qian, Review of effect of oxygen on room temperature ductility of titanium and titanium alloys, Powder Metallurgy, 57(4) (2014) 251-257.
DOI: 10.1179/1743290114y.0000000108
Google Scholar
[35]
D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato, T. Yashiro, Design and mechanical properties of new β type titanium alloys for implant materials, Materials Science and Engineering A, 243 (1-2), (1998), 244-249.
DOI: 10.1016/s0921-5093(97)00808-3
Google Scholar
[36]
Y. Li, C. Yang, H. Zhao, S. Qu, X. Li, Y. Li, New Developments of Ti-Based Alloys for Biomedical Applications, Materials 7 (3) (2014) 1709-1800.
DOI: 10.3390/ma7031709
Google Scholar
[37]
M. Calin, A. Gebert, A.C. Ghinea, et al., Designing biocompatible Ti-based metallic glasses for implant applications, Materials Science & engineering. C, Materials for Biological Applications 33(2) (2013) 875-883.
DOI: 10.1016/j.msec.2012.11.015
Google Scholar
[38]
S.L. Semiatin, An overview of the thermomechanical processing of α/β titanium alloys: current status and future research opportunities, Metallurgical and Materials Transactions A 51 (2020) 2593-2625.
DOI: 10.1007/s11661-020-05625-3
Google Scholar
[39]
O.M. Ivasishin, P.E. Markovsky, R.V. Teliovich, Yu.V. Matviychuk, STA heat treatment of beta-titanium alloys after various thermomechanical processing, Key Engineering Materials 188 (2000) 63-72.
DOI: 10.4028/www.scientific.net/kem.188.63
Google Scholar
[40]
C. Sauer, G. Luetjering, Thermo-mechanical processing of high strength β-titanium alloys and effects on microstructure and properties, Journal of Materials Processing Technology 117 (2001) 311-317.
DOI: 10.1016/s0924-0136(01)00788-9
Google Scholar
[41]
S. Delannoy, F. Prima, Ternary Ti-Zr-O Alloys, methods for producing same and associated utilizations thereof, EP 17202971 (2017).
Google Scholar
[42]
R. Poulain, S. Delannoy, J.-P. Couzinie, I. Guillot, E. Clouet, F. Prima, Extra-high oxygen addition as a new strengthening strategy to overcome strength/ductility trade-off in fully biocompatible hexagonal titanium alloys, MATEC Web of Conferences 321 (2020) 05012.
DOI: 10.1051/matecconf/202032105012
Google Scholar
[43]
V.P. Severdenko, V.Z. Zhilkin, Fundamentals of the theory and technology of wire drawing from titanium alloys, Science and technology, Minsk, 1970 (In Russian).
Google Scholar
[44]
G.L. Kolmogorov, Hydrodynamic lubrication for metal forming, Metallurgy, Moscow, 1986 (In Russian).
Google Scholar
[45]
O.P. Shaboldo, Ya.M. Vitorsky, V.A. Rafalovsky, etc., A. s. USSR 1702586 MKI V21 S1/00 (1991) (In Russian).
Google Scholar
[46]
S.V. Byvaltsev, The mechanism of oxide film formation for drawing titanium, Materials Today: Proceedings 19(5) (2019) 1949-1952.
DOI: 10.1016/j.matpr.2019.07.048
Google Scholar
[47]
P. Chen, D.D.L. Chung, Viscoelastic behavior of the cell wall of exfoliated graphite, Carbon 61 (2013) 305-312.
DOI: 10.1016/j.carbon.2013.05.009
Google Scholar
[48]
D. Chung, A review of exfoliated graphite, Journal of Materials Science 51 (2015) 9284-6.
Google Scholar
[49]
N.E. Sorokin, V.V. Avdeev, A.S. Tikhomirov, M.A. Lutfullin, M.I. Saidaminov, Composite nanomaterials based on intercalated graphite, Lomonosov Moscow State University, Moscow, 2010 (In Russian).
Google Scholar
[50]
P. Chen, D.D.L. Chung, Thermal and electrical conduction in the compaction direction of exfoliated graphite and their relation to the structure, Carbon 77 (2014) 538-550.
DOI: 10.1016/j.carbon.2014.05.059
Google Scholar
[51]
Z.W. Wyatt, W. Joost, D. Zhu, S. Ankem, Deformation mechanisms and kinetics of time-dependent twinning in an α-titanium alloy, International Journal of Plasticity 39 (2012) 119-131.
DOI: 10.1016/j.ijplas.2012.06.001
Google Scholar