Influence of Biodegradable Component Nature on Biodegradation of Composites Based on Polyethylene

Article Preview

Abstract:

The combination of natural additives with synthetic polymers allows the development of environmentally friendly materials with increased biodegradability. In this article, we investigated composite films based on low density polyethylene (PE) with different content (10-30 wt %) of natural rubber (NR). A mycological test with fungi and a full-scale soil test revealed that the composite with 30 wt% NR was the most biodegradable (weight loss was 7.2 wt % over 90 days). In the experiment on biodegradation in soil, the most intensive development of filamentous fungi was recorded in field tests. However, the rate of weight loss by samples of PLA-LDPE compositions when exposed in natural conditions is significantly lower than the rate of weight loss in laboratory tests. Thus, the present study was carried out to analyse the effect of various additives of biodegradable polymers on biodegradation in soil.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

623-629

Citation:

Online since:

February 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. H. Lee, I. Y. Kim, W. S. Song, Biodegradation of polylactic acid (PLA) fibers using different enzymes, Macromol. Res. 22 (2014) 657-663.

DOI: 10.1007/s13233-014-2107-9

Google Scholar

[2] W. Jia , R. H. Gong, P. J. Hogg, Poly (lactic acid) fibre reinforced biodegradable composites, Comp.: Part B: Eng. 62 (2014) 104-112.

DOI: 10.1016/j.compositesb.2014.02.024

Google Scholar

[3] S.H. Murphy, J.J. Marsh, C.A. Kelly, G.A. Leeke, M.J. Jenkins, CO2 assisted blending of poly(lactic acid) and poly(ε-caprolactone), Europ. Polym. J. 88 (2017) 34-43.

DOI: 10.1016/j.eurpolymj.2016.12.013

Google Scholar

[4] E. E. Mastalygina, I. A. Varyan, N. N. Kolesnikova, T. V. Monakhova, S. G. Karpova, A. A. Popov, Effect of chemical composition and dimensional parameters of natural filler on structure formation and physical-chemical properties of polyethylene composites, AIP Conf. Proc. 1783 (2016) 020150.

DOI: 10.1063/1.4966443

Google Scholar

[5] Yu. V. Tertyshnaya, M. V. Podzorova, Effect of UV irradiation on the structural and dynamic characteristics of polylactide and its blends with polyethylene, Rus. J. Phys. Chem. B. 14 (1) (2020) 167-175.

DOI: 10.1134/s1990793120010170

Google Scholar

[6] S. E. Fenni, J. Wang, N. Haddaoui, B. D. Favis, A. J. Müller, D. Cavallo, Crystallization and self-nucleation of PLA, PBS and PCL in their immiscible binary and ternary blends, Thermochimica Acta. 677 (2019) 117-130.

DOI: 10.1016/j.tca.2019.03.015

Google Scholar

[7] K. Fukushima, D. Tabuani, C. Abbate, M. Arena, L. Ferreri, Effect of sepiolite on the biodegradation of poly(lactic acid) and polycaprolactone, Polym. Degrad. Stab. 95 (2010) 2049-2056.

DOI: 10.1016/j.polymdegradstab.2010.07.004

Google Scholar

[8] B. J. Zyska, Microbial deterioration of rubber, Biodeterioration. Elsevier Applied Sciences. (1981) 535-552.

Google Scholar

[9] S. Imai, K. Ichikawa, Y. Muramatsu, D. Kasai, E. Masai, M. Fukuda, Isolation and characterization of Streptomyces, Actinoplanes, and Methylibium strains that are involved in degradation of natural rubber and synthetic poly(cis-1,4-isoprene), Enzyme Microb. Technol. 49 (2011) 526-531.

DOI: 10.1016/j.enzmictec.2011.05.014

Google Scholar

[10] I. A. Varyan, E. E. Mastalygina, N. N. Kolesnikova, A. A. Popov, E. O. Perepelitsina, Analysis of stress-strain characteristics of composite films based on polyethylene polymers with natural rubber, AIP Conf. Proc. 1909 (2017) 020226.

DOI: 10.1063/1.5013907

Google Scholar

[11] Y. Tokiwa, B. P. Calabia, Biodegradability and biodegradation of poly(lactide), Appl. Microbiol. Biotechnol. 72 (2006) 244-251.

DOI: 10.1007/s00253-006-0488-1

Google Scholar

[12] J. Lunt, Large-scale production, properties and commercial applications of polylactic acid polymers, Polym. Degrad. Stab. 59 (1998) 145-152.

DOI: 10.1016/s0141-3910(97)00148-1

Google Scholar

[13] Y. Tokiwa, B. P. Calabia, Biodegradability and biodegradation of polyesters, J. Polym. Environ. 15 (2007) 259-267.

DOI: 10.1007/s10924-007-0066-3

Google Scholar

[14] T. Ohkita, S. H. Lee, Thermal degradation and biodegradability of poly (lactic acid)/corn starch biocomposites, J. Appl. Polym. Sci. 100 (2006) 3009-3017.

DOI: 10.1002/app.23425

Google Scholar

[15] M. V. Podzorova, Yu. V. Tertyshnaya, Degradation of polylactide—polyethylene binary blends in soil, Rus. J. Appl. Chem. 92 (6) (2019) 767-774.

DOI: 10.1134/s1070427219060065

Google Scholar

[16] E. Mastalygina, I. Varyan, N. Kolesnikova, M. I. C. Gonzalez, A. Popov, Effect of natural rubber in polyethylene composites on morphology, mechanical properties and biodegradability, Polymers. 12 (2) (2020) 437.

DOI: 10.3390/polym12020437

Google Scholar

[17] M. V. Podzorova, Yu. V. Tertyshnaya, S. G. Karpova, A. A. Popov, Impact of UV treatment on polylactide-polyethylene film properties, IOP Conf. Ser. Mater. Sci. Eng. 525 (2019) 012043.

DOI: 10.1088/1757-899x/525/1/012043

Google Scholar

[18] L-T. Lim, R. Auras, M. Rubino, Processing technology for poly(lactic acid), Prog. Polym. Sci. 33 (2008) 820-852.

DOI: 10.1016/j.progpolymsci.2008.05.004

Google Scholar

[19] Q. Zhou, M. Xanthos, Nanoclay and crystallinity effects on the hydrolytic degradation of polylactides, Polym. Degrad. Stab. 93 (8) (2008) 1450-1459.

DOI: 10.1016/j.polymdegradstab.2008.05.014

Google Scholar

[20] A. Linos, M. Berekaa, R. Rudolf, U. Keller, J. Schmitt, H.-C. Flemming, R. M. Kroppenstedt, A. Steinbüchel, Biodegradation of cis-1,4-polyisoprene rubbers by distinct actinomycetes: microbial strategies and detailed surface analysis, Appl. Environ. Microbiol. 66 (4) (2000) 1639.

DOI: 10.1128/aem.66.4.1639-1645.2000

Google Scholar