[1]
S. H. Lee, I. Y. Kim, W. S. Song, Biodegradation of polylactic acid (PLA) fibers using different enzymes, Macromol. Res. 22 (2014) 657-663.
DOI: 10.1007/s13233-014-2107-9
Google Scholar
[2]
W. Jia , R. H. Gong, P. J. Hogg, Poly (lactic acid) fibre reinforced biodegradable composites, Comp.: Part B: Eng. 62 (2014) 104-112.
DOI: 10.1016/j.compositesb.2014.02.024
Google Scholar
[3]
S.H. Murphy, J.J. Marsh, C.A. Kelly, G.A. Leeke, M.J. Jenkins, CO2 assisted blending of poly(lactic acid) and poly(ε-caprolactone), Europ. Polym. J. 88 (2017) 34-43.
DOI: 10.1016/j.eurpolymj.2016.12.013
Google Scholar
[4]
E. E. Mastalygina, I. A. Varyan, N. N. Kolesnikova, T. V. Monakhova, S. G. Karpova, A. A. Popov, Effect of chemical composition and dimensional parameters of natural filler on structure formation and physical-chemical properties of polyethylene composites, AIP Conf. Proc. 1783 (2016) 020150.
DOI: 10.1063/1.4966443
Google Scholar
[5]
Yu. V. Tertyshnaya, M. V. Podzorova, Effect of UV irradiation on the structural and dynamic characteristics of polylactide and its blends with polyethylene, Rus. J. Phys. Chem. B. 14 (1) (2020) 167-175.
DOI: 10.1134/s1990793120010170
Google Scholar
[6]
S. E. Fenni, J. Wang, N. Haddaoui, B. D. Favis, A. J. Müller, D. Cavallo, Crystallization and self-nucleation of PLA, PBS and PCL in their immiscible binary and ternary blends, Thermochimica Acta. 677 (2019) 117-130.
DOI: 10.1016/j.tca.2019.03.015
Google Scholar
[7]
K. Fukushima, D. Tabuani, C. Abbate, M. Arena, L. Ferreri, Effect of sepiolite on the biodegradation of poly(lactic acid) and polycaprolactone, Polym. Degrad. Stab. 95 (2010) 2049-2056.
DOI: 10.1016/j.polymdegradstab.2010.07.004
Google Scholar
[8]
B. J. Zyska, Microbial deterioration of rubber, Biodeterioration. Elsevier Applied Sciences. (1981) 535-552.
Google Scholar
[9]
S. Imai, K. Ichikawa, Y. Muramatsu, D. Kasai, E. Masai, M. Fukuda, Isolation and characterization of Streptomyces, Actinoplanes, and Methylibium strains that are involved in degradation of natural rubber and synthetic poly(cis-1,4-isoprene), Enzyme Microb. Technol. 49 (2011) 526-531.
DOI: 10.1016/j.enzmictec.2011.05.014
Google Scholar
[10]
I. A. Varyan, E. E. Mastalygina, N. N. Kolesnikova, A. A. Popov, E. O. Perepelitsina, Analysis of stress-strain characteristics of composite films based on polyethylene polymers with natural rubber, AIP Conf. Proc. 1909 (2017) 020226.
DOI: 10.1063/1.5013907
Google Scholar
[11]
Y. Tokiwa, B. P. Calabia, Biodegradability and biodegradation of poly(lactide), Appl. Microbiol. Biotechnol. 72 (2006) 244-251.
DOI: 10.1007/s00253-006-0488-1
Google Scholar
[12]
J. Lunt, Large-scale production, properties and commercial applications of polylactic acid polymers, Polym. Degrad. Stab. 59 (1998) 145-152.
DOI: 10.1016/s0141-3910(97)00148-1
Google Scholar
[13]
Y. Tokiwa, B. P. Calabia, Biodegradability and biodegradation of polyesters, J. Polym. Environ. 15 (2007) 259-267.
DOI: 10.1007/s10924-007-0066-3
Google Scholar
[14]
T. Ohkita, S. H. Lee, Thermal degradation and biodegradability of poly (lactic acid)/corn starch biocomposites, J. Appl. Polym. Sci. 100 (2006) 3009-3017.
DOI: 10.1002/app.23425
Google Scholar
[15]
M. V. Podzorova, Yu. V. Tertyshnaya, Degradation of polylactide—polyethylene binary blends in soil, Rus. J. Appl. Chem. 92 (6) (2019) 767-774.
DOI: 10.1134/s1070427219060065
Google Scholar
[16]
E. Mastalygina, I. Varyan, N. Kolesnikova, M. I. C. Gonzalez, A. Popov, Effect of natural rubber in polyethylene composites on morphology, mechanical properties and biodegradability, Polymers. 12 (2) (2020) 437.
DOI: 10.3390/polym12020437
Google Scholar
[17]
M. V. Podzorova, Yu. V. Tertyshnaya, S. G. Karpova, A. A. Popov, Impact of UV treatment on polylactide-polyethylene film properties, IOP Conf. Ser. Mater. Sci. Eng. 525 (2019) 012043.
DOI: 10.1088/1757-899x/525/1/012043
Google Scholar
[18]
L-T. Lim, R. Auras, M. Rubino, Processing technology for poly(lactic acid), Prog. Polym. Sci. 33 (2008) 820-852.
DOI: 10.1016/j.progpolymsci.2008.05.004
Google Scholar
[19]
Q. Zhou, M. Xanthos, Nanoclay and crystallinity effects on the hydrolytic degradation of polylactides, Polym. Degrad. Stab. 93 (8) (2008) 1450-1459.
DOI: 10.1016/j.polymdegradstab.2008.05.014
Google Scholar
[20]
A. Linos, M. Berekaa, R. Rudolf, U. Keller, J. Schmitt, H.-C. Flemming, R. M. Kroppenstedt, A. Steinbüchel, Biodegradation of cis-1,4-polyisoprene rubbers by distinct actinomycetes: microbial strategies and detailed surface analysis, Appl. Environ. Microbiol. 66 (4) (2000) 1639.
DOI: 10.1128/aem.66.4.1639-1645.2000
Google Scholar