[1]
L. Amleh, A. Ghosh, Modeling the effect of corrosion on bond strength at the steel-concrete interface with finite element analysis, Can J Civ Eng, v. 33, pp.673-682 (2006).
DOI: 10.1139/l06-052
Google Scholar
[2]
L. Berto, P. Simioni, A. Saetta, Numerical modeling of bond behavior in RC structures affected by reinforcement corrosion, Eng Struct, v. 30, pp.1375-1385 (2008).
DOI: 10.1016/j.engstruct.2007.08.003
Google Scholar
[3]
V.N. Migunov, I.I. Ovchinnikov, I.G. Ovchinnikov, Eksperimental'no-teoreticheskoe modelirovanie armiro-vannykh konstruktsij v usloviyakh korrozii, Penza, PGUAS, p.362 (2014).
Google Scholar
[4]
V. Saraswathy, S. Muralidharan, K. Thangavel and S. Srinivasan, Effect of Activated Fly Ash on Corrosion Resistance and Strength of Concrete, Cement and Concrete Composites, v. 25 (7), pp.673-680 (2003).
DOI: 10.1016/s0958-9465(02)00068-9
Google Scholar
[5]
V. Saraswathy, S. Muralidharan, K. Thangavel and S. Srinivasan, Electrochemical Investigation of Corrosion Characteristics of Activated Ash and Slag Blended Cements, Materials Engineering, v. 14, pp.261-283 (2003).
Google Scholar
[6]
I.B. Topcu, A.R. Boga, F.O. Hocaoglu, Modeling corrosion currents of reinforced concrete using ANN, Automat Constr, v. 18 (2), pp.145-152, (2009).
Google Scholar
[7]
ODM 218.3.001-2010, Recommendations for the diagnosis of active corrosion of reinforcement in reinforced concrete structures of bridge structures on highways by the method of half-element potentials, (M.: Federal Road Agency (ROSAVTODOR), 2011).
Google Scholar
[8]
C.H. Lim, Y.S. Yoon, J.H. Kim, Genetic algorithm in mix proportioning of high performance concrete, Cem Concr Res, v. 34 (3), pp.409-420 (2004).
DOI: 10.1016/j.cemconres.2003.08.018
Google Scholar
[9]
E.M. Fairbairn, M.M. Silvoso, R.D. Filho, J.L. Alves, Ebecken NFF Optimization of mass concrete construction using genetic algorithms, Comput Struct, v. 82 (2-3), pp.281-299 (2004).
DOI: 10.1016/j.compstruc.2003.08.008
Google Scholar
[10]
B.B. Adhikary, H. Mutsuyoshi, Prediction of shear strength of steel fiber RC beams using neural networks, Constr Build Mater, v. 20 (9), pp.801-811 (2006).
DOI: 10.1016/j.conbuildmat.2005.01.047
Google Scholar
[11]
Z.H. Duan, S.C. Kou, C.S. Poon, Prediction of compressive strength of recycled aggregate concrete using artificial neural networks, Constr Build Mater, v. 40, pp.1200-1206 (2013).
DOI: 10.1016/j.conbuildmat.2012.04.063
Google Scholar
[12]
A.F. Ashour, L.F. Alvarez, V.V. Toropov, Empirical modeling of shear strength RC deep beams by genetic programming, Comput Struct, v. 81 (5), pp.331-338 (2003).
DOI: 10.1016/s0045-7949(02)00437-6
Google Scholar
[13]
L. Sadowski, Non-destructive investigation of corrosion current density in steel reinforced concrete by artificial neural networks, Arch Civ Mech Eng, v. 13 (1), pp.104-111 (2013).
DOI: 10.1016/j.acme.2012.10.007
Google Scholar
[14]
L. Sadowski, Non-destructive evaluation of the pulloff adhesion of concrete floor layers using rbf neural network, J Civ Eng Manag, v. 19 (4), pp.550-560 (2010).
DOI: 10.3846/13923730.2013.790838
Google Scholar
[15]
Z. Dahou, Z.M. Sbartai, A. Castel, F. Ghomari, Artificial neural network model for steel-concrete bond prediction, Eng Struct, v. 31 (8), pp.1724-1733 (2009).
DOI: 10.1016/j.engstruct.2009.02.010
Google Scholar
[16]
E.M. Golafshani, A. Rahai, M.S. Sebt, H. Akbarpour, Prediction of bond strength of spliced steel bars in concrete using artificial neural network and fuzzy logic, Constr Build Mater, v. 36, pp.411-418 (2012).
DOI: 10.1016/j.conbuildmat.2012.04.046
Google Scholar
[17]
I.N. Petrovnina, I.I. Romanenko, E.M. Pint, Study of cathodic reactions during intergranular corrosion of stainless steel, Science diary, v. 9 (33), p.14 (2019).
Google Scholar
[18]
I.I. Romanenko, Modified slag-alkali concretes with addition of biosynthesis by-products, Abstract dis. ... candidate of technical sciences, Saratov state. tech. un-t. Saratov (1993).
Google Scholar
[19]
I.N. Petrovnina, I.I. Romanenko, Determination of the tendency of steel 08X18H10T to intergranular corrosion under conditions of heat transfer and movement of the medium, Ural Scientific Bulletin, v. 12 (4), pp.3-8 (2017).
Google Scholar
[20]
I.N. Petrovnina, Increasing the durability of reinforced concrete by inhibiting corrosion of steel using mycelial masses, Regional architecture and construction, v. 2 (39), pp.39-43 (2019).
Google Scholar
[21]
Romanenko I.I., Petrovnina I.N., Pint E.M., M.I. Romanenko, Corrosion resistance of slag-alkaline concretes in organic media, Regional architecture and construction, v. 1, pp.42-51 (2013).
Google Scholar
[22]
I.I. Romanenko, I.N. Petrovnina, K.A. Elichev, Formation of cracks in the cement stone of building structures, Journal of Science, v. 11 (11), p.18 (2017).
Google Scholar
[23]
D.S. Smirnov, Z.A. Kamalova, R.Z. Rakhimov, Assessment of the corrosion resistance of steel reinforcement in modified concrete, Izvestiya KGASU, v. 3 (29), pp.133-139 (2014).
Google Scholar
[24]
Recommendations for the diagnosis of active corrosion of reinforcement in reinforced concrete structures of bridge structures on highways by the method of half-element potentials (Rosavtodor, Moscow, 2011).
Google Scholar