Changes in Mechanical Characteristics of HPC Samples Modified with WC and WO3 Nanopowder Agglomerates

Article Preview

Abstract:

The paper presents the results of tests of HPC (high performance composites) samples consisting of aramid and glass fabrics modified by agglomerates of WC and WO3 nanopowders. According to the test results, introduction of WC and WO3 powders into the composite plate structure makes it more rigid and elastic, increasing its ability to dissipate energy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

671-677

Citation:

Online since:

February 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Mahajian, V. Aher Composite material: a review over current development and automotive application. (2012) Int J Sci Res 2(11):1–5.

Google Scholar

[2] J. Hearle (ed) High-performance fibres. Woodhead Publishing Company, Cambridge (2001).

Google Scholar

[3] V. Gavrish, , T. Chayka, , G. Baranov, On the issue of the techniques to produce mass and low-price tungsten oxide nanopowder  Procedia Manufacturing, 2019, 37, p.306–310.

DOI: 10.1016/j.promfg.2019.12.052

Google Scholar

[4] V. Gavrish, , T. Chayka, , G. Baranov, Research of the Effect of Nanopowder Additives on Some Main Properties of Lubricants  Journal of Physics: Conference Series, 2020, 1443(1), 012002.

DOI: 10.1088/1742-6596/1443/1/012002

Google Scholar

[5] V. Gavrish, , T. Chayka, , G. Baranov, The study on agglomerates of WC, TiC, TaC nanopowder mixtures obtained from hard-alloy waste products Journal of Physics: Conference Series, 2019, 1410(1), 012010.

DOI: 10.1088/1742-6596/1410/1/012010

Google Scholar

[6] V. Gavrish, N. Cherkashina., T. Chayka, Investigations of the influence of tungsten carbide and tungsten oxide nanopowders on the radiation protection properties of cement matrix-based composite materials Journal of Physics: Conference Series, 2020, 1652(1), 012008.

DOI: 10.1088/1742-6596/1652/1/012008

Google Scholar

[7] M. Kharratzadeh, M. Shokrieh, M. Salamat-Talab: Effect of interface fiber angle on the mode I delamination growth of plain woven glass fiber-reinforced composites. Theor. Appl. Fract. Mech. 2018, 98, 1–12,.

DOI: 10.1016/j.tafmec.2018.09.006

Google Scholar

[8] G.T. Truong, K.-K. Choi: Effect of short multi-walled carbon nanotubes on the mode I fracture toughness of woven carbon fiber reinforced polymer composites. Constr. Build. Mater. 2020, 259, 119696,.

DOI: 10.1016/j.conbuildmat.2020.119696

Google Scholar

[9] G.T. Truong, H. Van Tran, K.-K. Choi: Tensile Behavior of Carbon Fiber-Reinforced Polymer Composites Incorporating Nanomaterials after Exposure to Elevated Temperature. J. Nanomater. 2019, 2019, 1-14,.

DOI: 10.1155/2019/4139208

Google Scholar

[10] K. Bilisik, E. Sapanci: Experiemntal determination of fracture toughness properties of nanostiched and nanoprepreg carbon/epoxy composites. Eng. Fract. Mech. 2018, 189, 293–306.

DOI: 10.1016/j.engfracmech.2017.11.033

Google Scholar

[11] L. Zhao, Y. Wang, J. Zhang, Y. Gong, Z. Lu, N. Hu, J. Xu,: An interface-dependent model of plateau fracture toughness in multidirectional CFRP laminates under mode I loading. Compos. Part B Eng. 2017, 131, 196–208,.

DOI: 10.1016/j.compositesb.2017.07.077

Google Scholar

[12] V.K. Srivastava, T. Gries, D. Veit, T. Quadflieg, B. Mohr, M. Kolloch: M. Effect of nanomaterial on mode I and mode II interlaminar fracture toughness of woven carbon fabric reinforced polymer composites. Eng. Fract. Mech. 2017, 180, 73–86.

DOI: 10.1016/j.engfracmech.2017.05.030

Google Scholar

[13] S. Di Leonardo; A. Nistal, G. Catalanotti, S.C. Hawkins, B. Falzon: Mode I interlaminar fracture toughness of thin-ply laminates with CNT webs at the crack interface. Compos. Struct. 2019, 225, 111178,.

DOI: 10.1016/j.compstruct.2019.111178

Google Scholar

[14] G. Ognibene, A. Latteri, S. Mannino, L. Saitta, G. Recca, F. Scarpa, G. Cicala: Interlaminar Toughening of Epoxy Carbon Fiber Reinforced Laminates: Soluble Versus Non-Soluble Veils. Polymers 2019, 11, 1029,.

DOI: 10.3390/polym11061029

Google Scholar

[15] F. Akasheh, H. Aglan: Fracture toughness enhancement of carbon fiber–reinforced polymer composites utilizing additive manufacturing fabrication. J. Elastomers Plast. 2018, 51, 698-711,.

DOI: 10.1177/0095244318817867

Google Scholar

[16] D. Quan, A. Ivankovic Effect of core-shell rubber (CSR) nano-particles on mechanical properties and fracturetoughness of an epoxy polymer. Polymer .66 (2015) 16–28.

DOI: 10.1016/j.polymer.2015.04.002

Google Scholar