[1]
G. Mahajian, V. Aher Composite material: a review over current development and automotive application. (2012) Int J Sci Res 2(11):1–5.
Google Scholar
[2]
J. Hearle (ed) High-performance fibres. Woodhead Publishing Company, Cambridge (2001).
Google Scholar
[3]
V. Gavrish, , T. Chayka, , G. Baranov, On the issue of the techniques to produce mass and low-price tungsten oxide nanopowder Procedia Manufacturing, 2019, 37, p.306–310.
DOI: 10.1016/j.promfg.2019.12.052
Google Scholar
[4]
V. Gavrish, , T. Chayka, , G. Baranov, Research of the Effect of Nanopowder Additives on Some Main Properties of Lubricants Journal of Physics: Conference Series, 2020, 1443(1), 012002.
DOI: 10.1088/1742-6596/1443/1/012002
Google Scholar
[5]
V. Gavrish, , T. Chayka, , G. Baranov, The study on agglomerates of WC, TiC, TaC nanopowder mixtures obtained from hard-alloy waste products Journal of Physics: Conference Series, 2019, 1410(1), 012010.
DOI: 10.1088/1742-6596/1410/1/012010
Google Scholar
[6]
V. Gavrish, N. Cherkashina., T. Chayka, Investigations of the influence of tungsten carbide and tungsten oxide nanopowders on the radiation protection properties of cement matrix-based composite materials Journal of Physics: Conference Series, 2020, 1652(1), 012008.
DOI: 10.1088/1742-6596/1652/1/012008
Google Scholar
[7]
M. Kharratzadeh, M. Shokrieh, M. Salamat-Talab: Effect of interface fiber angle on the mode I delamination growth of plain woven glass fiber-reinforced composites. Theor. Appl. Fract. Mech. 2018, 98, 1–12,.
DOI: 10.1016/j.tafmec.2018.09.006
Google Scholar
[8]
G.T. Truong, K.-K. Choi: Effect of short multi-walled carbon nanotubes on the mode I fracture toughness of woven carbon fiber reinforced polymer composites. Constr. Build. Mater. 2020, 259, 119696,.
DOI: 10.1016/j.conbuildmat.2020.119696
Google Scholar
[9]
G.T. Truong, H. Van Tran, K.-K. Choi: Tensile Behavior of Carbon Fiber-Reinforced Polymer Composites Incorporating Nanomaterials after Exposure to Elevated Temperature. J. Nanomater. 2019, 2019, 1-14,.
DOI: 10.1155/2019/4139208
Google Scholar
[10]
K. Bilisik, E. Sapanci: Experiemntal determination of fracture toughness properties of nanostiched and nanoprepreg carbon/epoxy composites. Eng. Fract. Mech. 2018, 189, 293–306.
DOI: 10.1016/j.engfracmech.2017.11.033
Google Scholar
[11]
L. Zhao, Y. Wang, J. Zhang, Y. Gong, Z. Lu, N. Hu, J. Xu,: An interface-dependent model of plateau fracture toughness in multidirectional CFRP laminates under mode I loading. Compos. Part B Eng. 2017, 131, 196–208,.
DOI: 10.1016/j.compositesb.2017.07.077
Google Scholar
[12]
V.K. Srivastava, T. Gries, D. Veit, T. Quadflieg, B. Mohr, M. Kolloch: M. Effect of nanomaterial on mode I and mode II interlaminar fracture toughness of woven carbon fabric reinforced polymer composites. Eng. Fract. Mech. 2017, 180, 73–86.
DOI: 10.1016/j.engfracmech.2017.05.030
Google Scholar
[13]
S. Di Leonardo; A. Nistal, G. Catalanotti, S.C. Hawkins, B. Falzon: Mode I interlaminar fracture toughness of thin-ply laminates with CNT webs at the crack interface. Compos. Struct. 2019, 225, 111178,.
DOI: 10.1016/j.compstruct.2019.111178
Google Scholar
[14]
G. Ognibene, A. Latteri, S. Mannino, L. Saitta, G. Recca, F. Scarpa, G. Cicala: Interlaminar Toughening of Epoxy Carbon Fiber Reinforced Laminates: Soluble Versus Non-Soluble Veils. Polymers 2019, 11, 1029,.
DOI: 10.3390/polym11061029
Google Scholar
[15]
F. Akasheh, H. Aglan: Fracture toughness enhancement of carbon fiber–reinforced polymer composites utilizing additive manufacturing fabrication. J. Elastomers Plast. 2018, 51, 698-711,.
DOI: 10.1177/0095244318817867
Google Scholar
[16]
D. Quan, A. Ivankovic Effect of core-shell rubber (CSR) nano-particles on mechanical properties and fracturetoughness of an epoxy polymer. Polymer .66 (2015) 16–28.
DOI: 10.1016/j.polymer.2015.04.002
Google Scholar