[1]
Gh. Barati Darband, M. Aliofkhazraei, P. Hamghalam, N. Valizade, Plasma electrolytic oxidation of magnesium and its alloys: Mechanism, properties and applications, J. Magnesium Alloys 5 (2017) 74–132.
DOI: 10.1016/j.jma.2017.02.004
Google Scholar
[2]
X.P. Zhang, Z.P. Zhao, F.M. Wu, Y.L. Wang, J. Wu, Corrosion and wear resistance of AZ91D magnesium alloy with and without microarc oxidation coating in Hank's solution, J. Mater. Sci. 42 (2007) 8523–8528.
DOI: 10.1007/s10853-007-1738-z
Google Scholar
[3]
J.E. Gray, B. Luan, Protective coatings on magnesium and its alloys – a critical review, J. of Alloys and Compounds 336 (2002) 88–113.
DOI: 10.1016/s0925-8388(01)01899-0
Google Scholar
[4]
S. Kandalam, P. Agrawal, G.S. Avadhani, S. Kumar, S. Suwas, Precipitation response of the magnesium alloy WE43 in strained and unstrained conditions, J. of Alloys and Compounds 623 (2015) 317–323.
DOI: 10.1016/j.jallcom.2014.09.179
Google Scholar
[5]
S. Gnedenkov, S. Sinebryukhov, A. Minaev, D. Mashtalyar, V. Egorkin, A. Gnedenkov, K. Nadaraia, Application of plasma electrolytic oxidation for repair of details of marine technique. Proc. Int. Offshore Polar Eng. Conf. 2015 (2015) 38–43.
DOI: 10.1016/j.vacuum.2015.02.004
Google Scholar
[6]
A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews, S.J. Dowey, Plasma electrolysis for surface engineering, Surf. Coat. Technol. 122 (1999) 73–93.
DOI: 10.1016/s0257-8972(99)00441-7
Google Scholar
[7]
R.O. Hussein, P. Zhang, X. Nie, Y. Xia, D.O. Northwood, The effect of current mode and discharge type on the corrosion resistance of plasma electrolytic oxidation (PEO) coated magnesium alloy AJ62, Surf. Coat. Technol. 206 (2011) 1990–(1997).
DOI: 10.1016/j.surfcoat.2011.08.060
Google Scholar
[8]
R.O. Hussein, D.O. Northwood, J.F. Su, X. Nie, A study of the interactive effects of hybrid current modes on the tribological properties of a PEO (plasma electrolytic oxidation) coated AM60B Mg-alloy, Surf. Coat. Technol. 215 (2013) 421–430.
DOI: 10.1016/j.surfcoat.2012.08.082
Google Scholar
[9]
P. Su, X. Wu, Y. Guo, Z. Jiang, Effects of cathode current density on structure and corrosion resistance of plasma electrolytic oxidation coatings formed on ZK60 Mg alloy, J. of Alloys and Compounds 475 (2009) 773–777.
DOI: 10.1016/j.jallcom.2008.08.030
Google Scholar
[10]
A.B. Podgorbunsky, K.V. Nadaraia, I.M. Imshinetsky, S.L. Sinebryukhov, S.V. Gnedenkov, Formation on magnesium alloy MA8 bioactive coatings containing nanosized hydroxyapatite, J. Phys.: Conf. Ser. 1092 (2018) 012117.
DOI: 10.1088/1742-6596/1092/1/012117
Google Scholar
[11]
A.N. Minaev, S.V. Gnedenkov, S.L. Sinebryukhov, D.V. Mashtalyar, V.S. Egorkin, A.S. Gnedenkov, K.V. Nadaraia, Functional Plasma Electrolytic Oxidation Coatings for Offshore Structures, Proc. Int. Offshore Polar Eng. Conf. 2014 (2014) 418–422.
DOI: 10.4028/www.scientific.net/ssp.213.149
Google Scholar
[12]
ISO 9227:2017, Corrosion tests in artificial atmospheres – Salt spray tests. (2017).
Google Scholar
[13]
D. Li, A.W. Neumann, Contact angles on hydrophobic solid surfaces and their interpretation, J. Colloid. Interf. Sci. 148 (1992) 190–200.
DOI: 10.1016/0021-9797(92)90127-8
Google Scholar
[14]
Z. Shi, A. Atrens, An innovative specimen configuration for the study of Mg corrosion, Corros. Sci. 53 (2011) 226–246.
DOI: 10.1016/j.corsci.2010.09.016
Google Scholar
[15]
K. Levenberg, A method for the solution of certain problems in least squares, Quart. Appl. Math. 2 (1944) 164–168.
DOI: 10.1090/qam/10666
Google Scholar
[16]
D. Marquardt, An algorithm for least-squares estimation of nonlinear parameters, SIAM J. Appl. Math. 11 (1963) 431–441.
Google Scholar