Determination of Optimal Parameters for Silicon Dioxide Production

Article Preview

Abstract:

The article presents the results of silicon dioxide leaching from quarry waste dumps with silicon content of 50% and more. NaOH solution was used as a leaching agent and H2SO4 solution as a precipitant. The influence of basic parameters on the leaching process (concentration of leaching agent, operating temperature, ratio of liquid phase to solid phase, stirring speed) and on the precipitation process (concentration of the precipitant and temperature) was investigated. As a result of using the optimal parameters a high efficiency of silica powder production of 98.7 % was achieved. The powder is presented mainly in the form of particle agglomerates. The average particle size is 300-700 nm, the size of agglomerates is more than 700 nm. The structure is predominantly porous.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

690-696

Citation:

Online since:

February 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Trofimova, O. Lomovsky, The Mechanism of Mechanochemical Interaction between Amorphous Silicon Dioxide and Pyrocatechol, Silicon. (2021) 13. 10.1007/s12633-020-00444-y.

DOI: 10.1007/s12633-020-00444-y

Google Scholar

[2] R. Chanana, On the ionization in silicon dioxide of a MOS device and its relation to the density of the oxide, IOSR Journal of Applied Physics. 12 (2021) 1-05. 10.9790/4861-1206020105.

Google Scholar

[3] A. Biessikirski, K. Barański, M. Pytlik, Ł. Kuterasiński, J. Biegańska, K. Słowiński, Application of Silicon Dioxide as the Inert Component or Oxide Component Enhancer in ANFO, Energies. 14 (2021) 2152. 10.3390/en14082152.

DOI: 10.3390/en14082152

Google Scholar

[4] M. Taha, R. Youness, M. Ibrahim, Biocompatibility, physico-chemical and mechanical properties of hydroxyapatite-based silicon dioxide nanocomposites for biomedical applications, Ceramics International. 46 (2020) 10.1016/j.ceramint.2020.06.132.

DOI: 10.1016/j.ceramint.2020.06.132

Google Scholar

[5] A.M. Kute, S. Waghuley, Photovoltaic application of ZnS loaded silicon dioxide rich composites, Materials & Design. 116 (2016) 10.1016/j.matdes.2016.11.071.

DOI: 10.1016/j.matdes.2016.11.071

Google Scholar

[6] O. F. Erkendirci, A. Çakıcı, A. Avcı, L.T. Dahil, Article Investigation of the penetration behavior of silicon dioxide epoxy hybrid nanocomposites, Journal of Composite Materials. 55 (2020) 1-11. 10.1177/0021998320973746.

DOI: 10.1177/0021998320973746

Google Scholar

[7] C. Kansal, R. Goyal, Effect of nano silica, silica fume and steel slag on concrete properties, Materials Today: Proceedings. (2020) 10.1016/j.matpr.2020.12.1162.

DOI: 10.1016/j.matpr.2020.12.1162

Google Scholar

[8] Y. Hua, L. Gu, S. Premaraj, X. Zhang, Role of Interphase in the Mechanical Behavior of Silica/Epoxy Resin Nanocomposites, Materials. 8 (2015) 3519-3531. 10.3390/ma8063519. (2015).

DOI: 10.3390/ma8063519

Google Scholar

[9] Q3 S. V. Vasyunina, N.P. Lukuttsova, V.O. Momot, Effect of Colloidal Silicon Dioxide on the Properties of Building Ceramics, Materials Science Forum. 992 (2020) 173-177. 10.4028/www.scientific.net/MSF.992.173.

DOI: 10.4028/www.scientific.net/msf.992.173

Google Scholar

[10] M. Schwan, M. Rößler, B. Milow, L. Ratke, From Fragile to Resilient Insulation: Synthesis and Characterization of Aramid-Honeycomb Reinforced Silica Aerogel Composite Materials, Gels. 2 (2015) 1. 10.3390/gels2010001.

DOI: 10.3390/gels2010001

Google Scholar

[11] S. Sembiring, A. Riyanto, I. Firdaus, J. Junaidi, R. Situmeang, Effect of calcination temperature on silica-asphalt composite properties using amorphous rice husk silica, Journal of Physics: Conference Series. 1751 (2021) 012071. 10.1088/1742-6596/1751/1/012071.

DOI: 10.1088/1742-6596/1751/1/012071

Google Scholar

[12] Y. Velyaev, D. Maiorov, I. Kometiani Research on Obtaining Silica Xerogels from Nepheline and Study of some of their Physical and Chemical Properties / Materials Science Forum, 989 (2019) 121-126,.

DOI: 10.4028/www.scientific.net/msf.989.121

Google Scholar

[13] X. Wang, C. Gong, J. Lei, J. Dai, L. Lu, X. Cheng, Effect of silica fume and nano-silica on hydration behavior and mechanism of high sulfate resistance Portland cement, Construction and Building Materials. 279 (2021) 122481. 10.1016/j.conbuildmat.2021.122481.

DOI: 10.1016/j.conbuildmat.2021.122481

Google Scholar

[14] Z. Yong-cun, Mechanical Properties of Modified Concrete Based on Nano-Silicon Dioxide, Integrated Ferroelectrics. 207 (2020) 37-48. 10.1080/10584587.2020.1728663.

DOI: 10.1080/10584587.2020.1728663

Google Scholar

[15] W. Shin, Y. Kwon, J. Kim, S. J. Hong, Y. Kim, S. Lim, Y. Chang, D. Kim, Improved Silica Dispersibility in Silica-rubber Compounds for a Tire Tread by Using an Itaconic Acid-based Polymeric Dispersant, Fibers and Polymers. 22 (2021) 10.1007/s12221-021-9355-z.

DOI: 10.1007/s12221-021-9355-z

Google Scholar

[16] D. Jayabalakrishnan, K. Saravanan, S. Ravi, P. Prabhu, M. Thirupathy, P. Arun, V. R. Prakash, Fabrication and Characterization of Acrylonitrile Butadiene Rubber and Stitched E-Glass Fibre Tailored Nano-Silica Epoxy Resin Composite, Silicon. (2020) 10.1007/s12633-020-00612-0.

DOI: 10.1007/s12633-020-00612-0

Google Scholar

[17] D. Li, X. Jiang, S. Wang, F. Zhao, W. Jiang, W. Liu, Research on the alkali-digestion properties of alumina and silicon dioxide during phase transformation roasting process, Fuel Processing Technology. 191 (2019) 223-231. 10.1016/j.fuproc.2019.04.013.

DOI: 10.1016/j.fuproc.2019.04.013

Google Scholar

[18] Z. Karshigina, A. Zinesh, Y. Bochevskaya, A. Akcil, E. Sargelova, Recovery of rare earth metals and precipitated silicon dioxide from phosphorus slag, Minerals Engineering. 77 (2015) 159-166.

DOI: 10.1016/j.mineng.2015.03.013

Google Scholar

[19] K. Adach, D. Kroisová, M. Fijalkowski, Biogenic silicon dioxide nanoparticles processed from natural sources, Particulate Science and Technology. (2020) 1-9. 10.1080/02726351.2020.1758857.

DOI: 10.1080/02726351.2020.1758857

Google Scholar

[20] S. Salamah, W. Trisunaryanti, I. Kartini, S. Purwono, Synthesis and characterization of mesoporous silica from beach sands as silica source, IOP Conference Series: Materials Science and Engineering. (2021) 1053. 012027. 10.1088/1757-899X/1053/1/012027.

DOI: 10.1088/1757-899x/1053/1/012027

Google Scholar

[21] A. Oliveira, R. Ferreira, P. Filho, Production of silica gel from waste metal silica residue, Materials Letters. 275 (2020). 128125. 10.1016/j.matlet.2020.128125.

DOI: 10.1016/j.matlet.2020.128125

Google Scholar