[1]
P. Hähner, Theory of solitary plastic waves, Applied Physics. vol. A58, no. 1 (1994) 41-58.
Google Scholar
[2]
О.А. Plechov, О.B. Naimark, N. Saintier, T. Palin-Luc, Elastic-plastic transition in iron: structure and thermodynamic features, Technical Physics. vol. 7, no. 8 (2009) 56–61.
DOI: 10.1134/s1063784209080088
Google Scholar
[3]
B. Reyne, P.-Y. Manach, N. Moes, Macroscpoic consequences of Poibert-Luders and Portevin-Le Chatelier bands during tensile Deformation in Al-Mg alloys, Materials Science and Engineering A. vol .746 (2019) 187-196.
DOI: 10.1016/j.msea.2019.01.009
Google Scholar
[4]
N.P. Kobelev, M.A. Lebyodkin, T.A. Lebedkina, Role of self-organization of dislocations in the onset and kinetics of macroscopic plastic instability, Metallurgical and Materials Transactions A. vol. 48, no. 3 (2017) 965-974.
DOI: 10.1007/s11661-016-3912-x
Google Scholar
[5]
V. Taupin, J. Chevy, C. Fressengeas, Effects of grain-to-grain interactions on shear strain localization in Al-Cu-Li rolled sheets, International Journal of Solids and Structures. vol. 99 (2016) 71-81.
DOI: 10.1016/j.ijsolstr.2016.07.023
Google Scholar
[6]
T. Tretyakova, V. Wildemann, Study of spatial-time inhomogeneity of inelastic deformation and failure in bodies with concentrators by using the digital image correlation and infrared analysis, Procedia Structural Integrity. vol. 5 (2017) 318-324.
DOI: 10.1016/j.prostr.2017.07.177
Google Scholar
[7]
L.B. Zuev, S.A. Barannikova, S.V. Kolosov, A.M. Nikonova, Temperature Dependence of Autowave Characteristics of Localized Plasticity, Physics of the Solid State. vol. 63, no. 1 (2021) 47-53.
DOI: 10.1134/s1063783421010236
Google Scholar
[8]
L.B. Zuev, S.A. Barannikova, Autowave Physics of Material Plasticity, Crystals. vol. 9, no. 9 (2019) 458-488.
DOI: 10.3390/cryst9090458
Google Scholar
[9]
L.B. Zuev, S.A. Barannikova, O.A. Maslova, The features of localized plasticity autowaves in solids, Materials Research. vol. 22, no. 4 (2019) e20180694:1-12.
DOI: 10.1590/1980-5373-mr-2018-0694
Google Scholar
[10]
L.B. Zuev, V.V. Gorbatenko, K.V. Pavlichev, Elaboration of speckle photography techniques for plastic flow analyses, Measurement Science and Technology. vol. 21 (2010) 054014:1-4.
DOI: 10.1088/0957-0233/21/5/054014
Google Scholar
[11]
P. Mallick, N.K. Tewary, S.K. Ghosh, P.P. Chattopadhyay, Effect of cryogenic deformation on microstructure and mechanical properties of 304 austenitic stainless steel, Materials Characterization. vol. 133 (2017) 77–86.
DOI: 10.1016/j.matchar.2017.09.027
Google Scholar
[12]
J. Talonen, P. Nenonen, G. Pape, H. Hanninen, Effect of strain rate on the strain induced gamma - alpha '-martensite transformation and mechanical properties of austenitic stainless steels, Metallurgical and Materials Transactions A. vol. 36, no. 2 (2005) 421–432.
DOI: 10.1007/s11661-005-0313-y
Google Scholar
[13]
F. Hahnenberger, R. Skorupski, M. Smaga, D. Eifler, Influence of mechanical loading, temperature and chemical composition on the deformation induced martensite formation in metastable austenitic steels, Materials Science Forum. vol. 738–739 (2013) 217–221.
DOI: 10.4028/www.scientific.net/msf.738-739.217
Google Scholar
[14]
K. Spencer, J.D. Embury, K.T. Conlon, M.Veron, Y. Brechet, Strengthening via the formation of strain-induced martensite in stainless steels, Materials Science and Engineering A. vol. 387 (2004) 873–881.
DOI: 10.1016/j.msea.2003.11.084
Google Scholar
[15]
J. Tamura, T. Maki, H. Hato, K. Aburai, On the Plasticity Induced by Martensitic Transformation in Fe–Ni Alloys and Fe–Ni–Cr Alloys, Journal of the Japan Institute of Metals and Materials. vol. 33, no. 12 (1969) 1383–1389.
DOI: 10.2320/jinstmet1952.33.12_1383
Google Scholar
[16]
M.A. Lebyodkin, D.A. Zhemchuzhnikova, T.A. Lebedkina, E.C. Aifantis, Kinematics of formation and cessation of type B deformation bands during the Portevin-Le Chatelier effect in an Al-Mg alloy, Results in Physics. vol. 12 (2019) 867-869.
DOI: 10.1016/j.rinp.2018.12.067
Google Scholar
[17]
A.A. Shibkov, M.F. Gasanov, M.A. Zheltov, A.E. Zolotov, V.I. Ivolgin, Intermittent plasticity associated with the spatio-temporal dynamics of deformation bands during creep tests in an Al-Mg polycrystal, International Journal of Plasticity. vol. 8 (2016) 37-55.
DOI: 10.1016/j.ijplas.2016.07.014
Google Scholar
[18]
A. Müller, C. Segel, M. Linderov, A. Vinogradov, A. Weidner, H. Biermann, The Portevin–Le Châtelier Effect in a Metastable Austenitic Stainless Steel Metallurgical and Materials Transactions A. vol. 47 (2016) 59-74.
DOI: 10.1007/s11661-015-2953-x
Google Scholar
[19]
C. Efstathiou, H. Sehitoglu, Strain hardening and heterogeneous deformation during twinning in Hadfield steel, Acta Materialia. vol. 58, no5 (2010) 1479-1488.
DOI: 10.1016/j.actamat.2009.10.054
Google Scholar
[20]
S. Martin, S. Wolf, U. Martin, L. Krüger, D. Rafaja, Deformation Mechanisms in Austenitic TRIP/TWIP Steel as a Function of Temperature, Metallurgical and Materials Transactions A. vol. 47, no. 1 (2016) 49-58.
DOI: 10.1007/s11661-014-2684-4
Google Scholar
[21]
J. Pelleg, Mechanical Properties of Materials, Dordrecht: Springer, (2013).
Google Scholar
[22]
H.C. Shin., T.K. Ha, Y.W. Chang, Kinetics of deformation induced martensitic transformation in a 304 stainless steel, Scripta Materialia. vol. 45, no. 7 (2001) 823–829.
DOI: 10.1016/s1359-6462(01)01101-0
Google Scholar
[23]
G.B. Olson, M. Cohen, Kinetics of strain-induced martensitic nucleation, Metallurgical and Materials Transactions A. vol. 6. No. 4 (1975) 791–795.
DOI: 10.1007/bf02672301
Google Scholar
[24]
R.K. Nutor, N.K. Adomako, Y.Z. Fang, Using the Hollomon Model to Predict Strain-Hardening in Metals, American Journal of Materials Synthesis and Processing. vol. 2, no. 1 (2017) 1-4.
DOI: 10.11648/j.ajmsp.20170201.11
Google Scholar