[1]
R. Syamsai, P. Kollu, S.K. Jeong, A.N. Grace, Synthesis and properties of 2D-titanium carbide MXene sheets towards electrochemical energy storage applications, Ceram. Int. 43 (2017) 13119-13126.
DOI: 10.1016/j.ceramint.2017.07.003
Google Scholar
[2]
X. Yuan, L. Cheng, L. Kong, X. Yin, L. Zhang, Preparation of titanium carbide nanowires for application in electromagnetic wave absorption, J. Alloys Compd. 596 (2014) 132-139.
DOI: 10.1016/j.jallcom.2014.01.022
Google Scholar
[3]
A. Hashim, Q. Hadi, Structural, electrical and optical properties of (biopolymer blend/titanium carbide) nanocomposites for low cost humidity sensors, J. Mater. Sci. Mater. Electron. 29 (2018) 11598-11604.
DOI: 10.1007/s10854-018-9257-z
Google Scholar
[4]
M. Mishra, A.P. Singh, S.K. Dhawan, Expanded graphite-nanoferrite-fly ash composites for shielding of electromagnetic pollution, J. Alloys Compd. 557 (2013) 244-251.
DOI: 10.1016/j.jallcom.2013.01.004
Google Scholar
[5]
C. Veiga, J.P. Davim, A.J.R. Loureiro, Properties and applications of titanium alloys: a brief review. Rev. Adv. Mater. Sci. 32:2 (2012) 133-148.
Google Scholar
[6]
W. Sha, S. Malinov, Titanium alloys: modelling of microstructure, properties and applications, Elsevier (2009).
Google Scholar
[7]
M. Özcan, C. Hämmerle, Titanium as a reconstruction and implant material in dentistry: advantages and pitfalls, Materials 5 (2012) 1528-1545.
DOI: 10.3390/ma5091528
Google Scholar
[8]
A. Jemat, M.J. Ghazali, M. Razali, Y. Otsuka, Surface modifications and their effects on titanium dental implants, BioMed Res. Int. 2015 (2015) 1-11.
DOI: 10.1155/2015/791725
Google Scholar
[9]
M.L. Goodwin, P.H. Lee, N.A. Mokadam, Implantable continuous-flow blood pump technology and features, in: Mechanical Support for Heart Failure, Springer, 2020, pp.337-358.
DOI: 10.1007/978-3-030-47809-4_22
Google Scholar
[10]
K.S. Khorkov, A.V. Maleev, R.V. Chkalov, D.A. Kochuev, S.M. Arakelian, V.G. Prokoshev, Investigation of carbon structures of single crystals obtained by laser synthesis, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 12 (2018) 392-394.
DOI: 10.1134/s1027451018020271
Google Scholar
[11]
K.S. Khorkov, M.Yu. Zvyagin, D.A. Kochuev, R.V. Chkalov, S.M. Arakelian, V.G. Prokoshev, Model of the subsurface overheating of carbon samples upon laser impact in liquid nitrogen, Bulletin of the Russian Academy of Sciences: Physics 81 (2017) 1433-1437.
DOI: 10.3103/s106287381712019x
Google Scholar
[12]
B.F. Mohazzab, B. Jaleh, O. Kakuee, A. Fattah-Alhosseini, Formation of titanium carbide on the titanium surface using laser ablation in n-heptane and investigating its corrosion resistance, Appl. Surf. Sci. 478 (2019) 623-635.
DOI: 10.1016/j.apsusc.2019.01.259
Google Scholar
[13]
M.J. Hamedi, M.J. Torkamany, J. Sabbaghzadeh, Effect of pulsed laser parameters on in-situ TiC synthesis in laser surface treatment, Opt. Laser Eng. 49 (2011) 557-563.
DOI: 10.1016/j.optlaseng.2010.12.002
Google Scholar
[14]
W.J. Witteman, The CO2 laser, Springer series in optical sciences 53 (2013).
Google Scholar
[15]
K.S. Khorkov, D.A. Kochuev, V.A. Ilin, R.V. Chkalov, V.G. Prokoshev, Formation of micro-and nanostructures under the influence of femtosecond laser radiation on carbon samples in liquid nitrogen, J. Phys. Conf. Ser. 1400 (2019) 055027.
DOI: 10.1088/1742-6596/1400/5/055027
Google Scholar
[16]
D.A. Kochuev, K.S. Khorkov, A.A. Voznesenskaya, R.V. Chkalov, V.G. Prokoshev, Laser ablation of materials by femtosecond laser pulses in liquid media, 2018 International Conference Laser Optics (2018) 335.
DOI: 10.1109/lo.2018.8435807
Google Scholar
[17]
Y. Wu, A.H. Wang, Z. Zhang, H.B. Xia, Y.N. Wang, Wear resistance of in situ synthesized titanium compound coatings produced by laser alloying technique, Surf. Coat. Tech. 258 (2014) 711-715.
DOI: 10.1016/j.surfcoat.2014.08.012
Google Scholar
[18]
O.B. Malyshev, Characterisation of a turbo-molecular pumps by a minimum of parameters, Vacuum 81:6 (2007) 752-758.
DOI: 10.1016/j.vacuum.2005.11.055
Google Scholar
[19]
B.F. Mohazzab, B. Jaleh, A. Fattah-Alhosseini, F. Mahmoudi, A. Momeni, Laser surface treatment of pure titanium: Microstructural analysis, wear properties, and corrosion behavior of titanium carbide coatings in Hank's physiological solution, Surf. Interfaces 20 (2020) 100597.
DOI: 10.1016/j.surfin.2020.100597
Google Scholar
[20]
M. Ye, C.P. Grigoropoulos, Time-of-flight and emission spectroscopy study of femtosecond laser ablation of titanium, J. Appl. Phys. 89 (2001) 5183-5190.
DOI: 10.1063/1.1360696
Google Scholar
[21]
K.S. Khorkov, D.A. Kochuev, V.A. Ilin, R.V. Chkalov, V.G. Prokoshev, S.M. Arakelian, Mechanisms of graphene exfoliation under the action of femtosecond laser radiation in liquid nitrogen, J. Phys. Conf. Ser. 951 (2018) 012014.
DOI: 10.1088/1742-6596/951/1/012014
Google Scholar
[22]
L.F. Bonetti, G. Capote, L.V. Santos, E.J. Corat, V.J. Trava-Airoldi, Adhesion studies of diamond-like carbon films deposited on Ti6Al4V substrate with a silicon interlayer, Thin Solid Films 515:1 (2006) 375-379.
DOI: 10.1016/j.tsf.2005.12.154
Google Scholar
[23]
J. Song, F. Wang, X. Yang, B. Ning, M.G. Harp, S.H. Culp, S. Hu, P. Huang, L. Nie, J. Chen, X. Chen, Gold nanoparticle coated carbon nanotube ring with enhanced raman scattering and photothermal conversion property for theranostic applications, J. Am. Chem. Soc. 138:22 (2016) 7005-7015.
DOI: 10.1021/jacs.5b13475
Google Scholar
[24]
V.A. Ilyin, K.S. Khorkov, R.V. Chkalov, D.A. Kochuev, V.G. Prokoshev, Mapping of graphene layers by program identification based on Raman spectroscopy data, J. Phys. Conf. Ser. 1331 (2019) 012013.
DOI: 10.1088/1742-6596/1331/1/012013
Google Scholar
[25]
X. Yin, I. Gotman, L. Klinger, E.Y. Gutmanas, Formation of titanium carbide on graphite via powder immersion reaction assisted coating, Mater. Sci. Eng. A 396 (2005) 107-114.
DOI: 10.1016/j.msea.2005.01.011
Google Scholar
[26]
Y. Luo, S. Ge, Z. Jin, J. Fisher, Formation of titanium carbide coating with micro-porous structure, Appl. Phys. A 98 (2010) 765-768.
DOI: 10.1007/s00339-009-5495-5
Google Scholar