[1]
V. Protsenko, V.Chorney, Arthroplasty of ankle joint in cases of the distal tibia tumors, Foot and Ankle Surgery. 22, 2 (2016) 94-95.
DOI: 10.1016/j.fas.2016.05.245
Google Scholar
[2]
E.A. Salvati, T. Artz, P. Aglietti, S.E. Asnis, Endoprostheses in the Treatment of Femoral Neck Fractures, Orthopedic Clinics of North America. 5, 4 (1974) 757-777.
DOI: 10.1016/s0030-5898(20)31032-4
Google Scholar
[3]
M.A. Ghert, J.M. Harrelson, S.P. Scully, Total femoral replacement, Operative Techniques in Orthopaedics. 9, 2 (1999) 121-127.
DOI: 10.1016/s1048-6666(99)80031-7
Google Scholar
[4]
Z. Maharaj, J.N. Cakic, J.R.T. Pietrzak, Return to sports after total hip arthroplasty: keep your (femoral) head in the game – A narrative review, Sports Orthopaedics and Traumatology. 37, 1 (2021) 51-58.
DOI: 10.1016/j.orthtr.2020.10.008
Google Scholar
[5]
M. Rekant, Distal ulna arthroplasties, Hand Clinics. 28, 4 (2012) 611-615.
DOI: 10.1016/j.hcl.2012.08.016
Google Scholar
[6]
L.S. Pinchuk, V.I. Nikolaev, E.A. Tsvetkova, V.A. Goldade, Arthrology and joint endoprosthetics, Tribology and Interface Engineering Series. 50 (2006) 7-41.
DOI: 10.1016/s0167-8922(06)80058-1
Google Scholar
[7]
L.S. Pinchuk, V.I. Nikolaev, E.A. Tsvetkova, V.A. Goldade, Materials for joint endoprostheses, Tribology and Interface Engineering Series. 50 (2006) 43-73.
Google Scholar
[8]
L.S. Pinchuk, V.I. Nikolaev, E.A. Tsvetkova, V.A. Goldade, Designs of joint endoprostheses, Tribology and Interface Engineering Series. 50 (2006) 75-129.
DOI: 10.1016/s0167-8922(06)80060-x
Google Scholar
[9]
L.S. Pinchuk, V.I. Nikolaev, E.A. Tsvetkova, V.A. Goldade, Tribological aspects of endoprosthetics, Tribology and Interface Engineering Series. 50 (2006) 195-238.
DOI: 10.1016/s0167-8922(06)80062-3
Google Scholar
[10]
A. Volker, Antimicrobial coated implants in trauma and orthopaedics – A clinical review and risk-benefit analysis, Injury. 48, 3 (2017) 599-607.
DOI: 10.1016/j.injury.2016.12.011
Google Scholar
[11]
D.J. Beevers, B.B. Seedhom, Metacrpophalangeal joint prostheses: A review of the clinical results of past and current designs, The Journal of Hand Surgery: British & European volume. 20, 2 (1995) 125-136.
DOI: 10.1016/s0266-7681(05)80038-5
Google Scholar
[12]
C.-Y. Lung, T.-H. Chen, C.-K. Cheng, K.-S. Lee, W.-H. Lo, An in vitro comparison of the motion behavior of different bipolar endoprostheses, The Journal of Arthroplasty. 14, 7 (1999) 822-826.
DOI: 10.1016/s0883-5403(99)90032-3
Google Scholar
[13]
S.M. Kurtz, Alternatives to conventional UHMWPE for hip arthroplasty, The UHMWPE Handbook Ultra-High Molecular Weight Polyethylene in total joint replacement. (2004) 93-121.
DOI: 10.1016/b978-012429851-4/50007-3
Google Scholar
[14]
A. Ruggiero, R. D'Amato, E. Gomez, M. Merola, Experimental comparison on tribological pairs UHMWPE/TIAL6V4 alloy, UHMWPE/AISI316L austenitic stainless and UHMWPE/AL2O3 ceramic, under dry and lubricated conditions, Tribology International. 96 (2016) 349-360.
DOI: 10.1016/j.triboint.2015.12.041
Google Scholar
[15]
A. Bistolfi, F. Giustra, F. Bosco, L. Sabatini, A. Aprato, P. Bracco, A. Bellare, Ultra-high molecular weight polyethylene (UHMWPE) for hip and knee arthroplasty: The present and the future, Journal of Orthopaedics. 25 (2021) 98-106.
DOI: 10.1016/j.jor.2021.04.004
Google Scholar
[16]
E.B. del Prever, M. Crova, L. Costa, A. Dallera, G. Camino, P. Gallinaro, Unacceptable biodegradation of polyethylene in vivo, Biomaterials. 17, 9 (1996) 873-878.
DOI: 10.1016/0142-9612(96)83282-0
Google Scholar
[17]
K.-Y. Sun, Y. Wu, J.Xu, W. Xiong, W. Xu, J. Li, Z. Sun, Z. Lv, X.S. Wu, Q. Jiang, H.-L. Cai, D. Shi, Niobium carbide (MXene) reduces UHMWPE particle-induced osteolysis, Bioactive Materials. (2021).
DOI: 10.1016/j.bioactmat.2021.06.016
Google Scholar
[18]
D.Yang, S. Qu, J. Huang, Z. Cai, Z. Zhou, Characterization of alendronate sodium-loaded UHMWPE for anti-osteolysis in orthopedic applications, Materials Science and Engineering: C. 32, 2 (2012) 83-91.
DOI: 10.1016/j.msec.2011.09.012
Google Scholar
[19]
R.W. McCalden, C.A. Busch, J.M. Martell, S.J. MacDonald, R.B. Bourne, C.H. Rorabeck, Comparison of acetabular wear and osteolysis in RAM extruded vs machined compression molded UHMWPE, The Journal of Arthroplasty. 21, 2 (2006) 304.
DOI: 10.1016/j.arth.2006.02.008
Google Scholar
[20]
Y. Liu, S.K. Sinha, Wear performances of UHMWPE composites with nacre and CNTs, and PFPE coatings for bio‐medical applications. Wear. 300 (2013) 44–54.
DOI: 10.1016/j.wear.2013.01.102
Google Scholar
[21]
A. Golchin, A. Villain, N. Emami, Tribological behaviour of nanodiamond reinforced UHMWPE in waterlubricated contacts. Tribol. Int.. 110 (2017) 195–200.
DOI: 10.1016/j.triboint.2017.01.016
Google Scholar
[22]
M.F.M. Zulkifli, J. Stolk, U. Heisserer, A.T.‐M. Yong, Z. Li, X.M. Hu, Strategic positioning of carbon fiber layers in an UHMwPE ballistic hybrid composite panel, International Journal of Impact Engineering. 129 (2019).
DOI: 10.1016/j.ijimpeng.2019.02.005
Google Scholar
[23]
B.P. Chang, H.M. Akil, R.M. Nasir, Mechanical and Tribological Properties of zeolite‐reinforced UHMWPE composite for implant application, Procedia Eng.. 68 (2013) 88–94.
DOI: 10.1016/j.proeng.2013.12.152
Google Scholar
[24]
F. Alam, M. Choosri, T.K. Gupta, K.M. Varadarajan, D. Choi, S. Kumar, Electrical, mechanical and thermal properties of graphene nanoplatelets reinforced UHMWPE nanocomposites, Mater. Sci. Eng. B. 241 (2019) 82–91.
DOI: 10.1016/j.mseb.2019.02.011
Google Scholar
[25]
G. Shi, Z. Cao, X. Yan, Q. Wang, In‐situ fabrication of a UHMWPE nanocomposite reinforced by SiO2 nanospheres and its tribological performance, Mater. Chem. Phys.. 236 (2019) 121778.
DOI: 10.1016/j.matchemphys.2019.121778
Google Scholar
[26]
J. Zec, N. Tomic, M. Zrilic, S. Markovic, D. Stojanovic, R. Jancic‐Heinemann, Processing and characterization of UHMWPE composite fibres with alumina particles in poly(ethylene‐vinyl acetate) matrix, J. Thermoplast. Compos. Mater. 31 (2018) 689–708.
DOI: 10.1177/0892705717718240
Google Scholar
[27]
G. Guofang, Y. Huayong, F. Xin, Tribological properties of kaolin filled UHMWPE composites in unlubricated sliding, Wear. 256 (2004) 88–94.
DOI: 10.1016/s0043-1648(03)00394-6
Google Scholar
[28]
F. Ruan, L. Bao, Mechanical enhancement of UHMWPE fibers by coating with carbon nanoparticles, Fibers Polym.. 15 (2014) 723–728.
DOI: 10.1007/s12221-014-0723-9
Google Scholar
[29]
J.O. Berumen, T. De la Mora, N. Lopez‐Perrusquia, I. Jimenez‐Palomar, S. Muhl, C. Hernandez‐Navarro, E. Garcia, Structural, chemical and mechanical study of TiAlV film on UHMWPE produced by DC magnetron sputtering, J. Mech. Behav. Biomed. Mater.. 93 (2019) 23–30.
DOI: 10.1016/j.jmbbm.2019.01.010
Google Scholar
[30]
H.-M. Qin, D. Herrera, D.-F. Liu, C.-Q. Chen, A. Nersesyan, M. Misik, S. Knasmueller, Genotoxic properties of materials used for endoprostheses: Experimental and human data, Food and Chemical Toxicology. 145 (2020) 111707.
DOI: 10.1016/j.fct.2020.111707
Google Scholar
[31]
K. Yamamoto, T. Tateiwa, Y. Takahashi, Vitamin E-stabilized highly crosslinked polyethylenes: The role and effectiveness in total hip arthroplasty, Journal of Orthopaedic Science. 22, 3 (2017) 384–390.
DOI: 10.1016/j.jos.2017.01.012
Google Scholar