[1]
Otsuka K. Shape memory materials. – Cambridge university press, - (1999).
Google Scholar
[2]
O.N. Gvozdeva, A.V. Shalin, A.S. Stepushin The correlation among chemical composition, structure and mechanical properties in titanium alloys for the elements with increased dynamic ability //IOP Conference Series: Materials Science and Engineering. 2020. V. 709. Iss. 2. Art. 022082.
DOI: 10.1088/1757-899x/709/2/022082
Google Scholar
[3]
Hartl D.J., Lagoudas D.C. Aerospace Applications of Shape Memory Alloys // Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering. 2007. Vol. 221. Iss. 4. P. 535-552.
DOI: 10.1243/09544100jaero211
Google Scholar
[4]
Lecce L. et al. (ed.). Shape memory alloy engineering: for aerospace, structural and biomedical applications. Elsevier, (2014).
Google Scholar
[5]
Kollerov M.Yu., Ilyin A.A. Features of the production and use of biologically and mechanically compatible implants from titanium nickelide / Titan. 2018. No. 1. P. 47-54.
Google Scholar
[6]
Titanium nickelide. Medical material of a new generation / V.E. Gunther et al. - Tomsk: MIT publishing, 2006.296 p.
Google Scholar
[7]
Regularities of the shape change of alloys based on titanium nickelide under mechanical and thermal impact / Kollerov M.Yu., Gusev DE, Burnaev A.V. // Vitebsk State Technological University: Actual problems of strength in 2 volumes. Vitebsk, 2018. P. 141-160.
Google Scholar
[8]
K.N Melton, O Mercier Fatigue of NITI thermoelastic martensites / Acta Metallurgica Volume 27, Issue 1, January 1979, Pages 137-144.
DOI: 10.1016/0001-6160(79)90065-8
Google Scholar
[9]
S.V. Skvortsova, O. N. Gvozdeva, A. V. Shalin, A. S. Stepushin Gradient structure formation in titanium alloys using thermohydrogen treatment technology //IOP Conference Series: Materials Science and Engineering. 2020. Vol. 848. Iss. 1. Art. 012025.
DOI: 10.1088/1757-899x/848/1/012025
Google Scholar