Influence of Curved Fibers on the Mechanical Behavior of Variable Stiffness Composites

Article Preview

Abstract:

Composite materials are widely used in various industries due to their high specific characteristics. The most common composites are laminates, which consist of multidirectional layers with unidirectional fibers adapted to stresses of the laminates. However, the efficiency of such structures is significantly reduced when there are stress concentrators. One of the ways to increase the efficiency of composite structures with stress concentrators is to change the reinforcement structure and use the transition from unidirectional fibers to curvilinear fibers, which could be adapted to both the geometry and the loads of the composite structures. This short review describes the various methods by which it is possible to manufacture composite structures with curved fibers and change the reinforcement structure. Composite structures both unidirectional fibers and curved fibers made by different manufacturing technologies are considered and compared as well as the efficiency of the composites is analyzed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

814-819

Citation:

Online since:

February 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.W. Hyer, R.F. Charette, Use of curvilinear fiber format in composite structure design, AIAA J. 29 (1991) 1011-1015.

DOI: 10.2514/3.10697

Google Scholar

[2] A.V. Malakhov, A.N. Polilov, Design of composite structures reinforced curvilinear fibres using FEM, Compos. Part A-Appl. S. 87 (2016) 23-28.

DOI: 10.1016/j.compositesa.2016.04.005

Google Scholar

[3] T. Shafighfard, E. Demir, M. Yildiz, Design of fiber-reinforced variable-stiffness composites for different open-hole geometries with fiber continuity and curvature constraints, Compos. Struct. 226 (2019) 111280.

DOI: 10.1016/j.compstruct.2019.111280

Google Scholar

[4] A.V. Malakhov, A.N. Polilov, J. Zhang, Z. Hou, X. Tian, A modeling method of continuous fiber paths for additive manufacturing (3D printing) of variable stiffness composite structures, Appl. Compos. Mater. 27 (2020) 185-208.

DOI: 10.1007/s10443-020-09804-8

Google Scholar

[5] R.T.L. Ferreira, I.A. Ashcroft, Optimal orientation of fibre composites for strength based on Hashin's criteria optimality conditions, Struct. Multidisc. Optim. 61 (2020) 2155-2176.

DOI: 10.1007/s00158-019-02462-w

Google Scholar

[6] T. Wang, N. Li, G. Link, J. Jelonnek, J. Fleischer, J. Dittus, D. Kupzik, Load-dependent path planning method for 3D printing of continuous fiber reinforced plastics, Compos. Part A-Appl. S. 140 (2021) 106181.

DOI: 10.1016/j.compositesa.2020.106181

Google Scholar

[7] Y. Chen, L. Ye, Topological design for 3D-printing of carbon fibre reinforced composite structural parts, Compos. Sci. Technol. 204 (2021) 108644.

DOI: 10.1016/j.compscitech.2020.108644

Google Scholar

[8] L.-W. Chang, S.-S. Yau, T.-W. Chou, Notched strength of woven fabric composites with moulded-in holes, Composites. 18 (1987) 233-241.

DOI: 10.1016/0010-4361(87)90413-7

Google Scholar

[9] H.J. Lin, Y.J. Lee, Strength of composite laminates with continuous fiber around a circular hole, Compos. Struct. 21 (1992) 155-162.

DOI: 10.1016/0263-8223(92)90015-5

Google Scholar

[10] A. Nakai, T. Ohki, N. Takeda, H. Hamada, Mechanical properties and micro-fracture behaviors of flat braided composites with a circular hole, Compos. Struct. 52 (2001) 315-322.

DOI: 10.1016/s0263-8223(01)00024-1

Google Scholar

[11] A. Langella, M. Durante, Comparison of Tensile Strength of Composite Material Elements with Drilled and Molded-in Holes, Appl. Compos. Mater. 15 (2008) 227-239.

DOI: 10.1007/s10443-008-9069-z

Google Scholar

[12] M. Durante, A. Langella, Bearing Behavior of Drilled and Molded-in Holes, Appl. Compos. Mater. 16 (2009) 297-306.

DOI: 10.1007/s10443-009-9095-5

Google Scholar

[13] F. Xu, L. Sun, L. Zhu, S. Yang, D. Hui, Y. Qiu, X-ray 3D microscopy analysis of fracture mechanisms for 3D orthogonal woven E-glass/epoxy composites with drilled and moulded-in holes, Compos. Part B-Eng. 133 (2018) 193-202.

DOI: 10.1016/j.compositesb.2017.09.033

Google Scholar

[14] E.G. Koricho, A. Khomenko, T. Fristedt, M. Haq, Innovative tailored fiber placement technique for enhanced damage resistance in notched composite laminate, Compos. Struct. 120 (2015) 378-385.

DOI: 10.1016/j.compstruct.2014.10.016

Google Scholar

[15] J.H.S. Almeida Jr., L. Bittrich, A. Spickenheuer, Improving the open-hole tension characteristics with variable-axial composite laminates: Optimization, progressive damage modeling and experimental observations, Compos. Sci. Technol. 185 (2020) 107889.

DOI: 10.1016/j.compscitech.2019.107889

Google Scholar

[16] H.M. El-Dessouky, M.N. Saleh, M. Gautam, G. Han, R.J. Scaife, P. Potluri, Tailored fibre placement of commingled carbon-thermoplastic fibres for notch-insensitive composites, Compos. Struct. 214 (2019) 348-358.

DOI: 10.1016/j.compstruct.2019.02.043

Google Scholar

[17] K. Katagiri, S. Honda, S. Nakaya, T. Kimura, S. Yamaguchi, H. Sonomura, T. Ozaki, S. Kawakita, M. Takemura, K. Sasaki, Tensile strength of CFRP with curvilinearly arranged carbon fiber along the principal stress direction fabricated by the electrodeposition resin molding, Compos. Part A-Appl. S. 143 (2021) 106271.

DOI: 10.1016/j.compositesa.2021.106271

Google Scholar

[18] A.N. Dickson, K.-A. Ross, D.P. Dowling, Additive manufacturing of woven carbon fibre polymer composites, Compos. Struct. 206 (2018) 637-643.

DOI: 10.1016/j.compstruct.2018.08.091

Google Scholar

[19] A.N. Dickson, D.P. Dowling, Enhancing the bearing strength of woven carbon fibre thermoplastic composites through additive manufacturing, Compos. Struct. 212 (2019) 381-388.

DOI: 10.1016/j.compstruct.2019.01.050

Google Scholar

[20] H. Zhang, A.N. Dickson, Y. Sheng, T. McGrail, D.P. Dowling, C. Wang, A. Neville, D. Yang, Failure analysis of 3D printed woven composite plates with holes under tensile and shear loading, Compos. Part B-Eng. 186 (2020) 107835.

DOI: 10.1016/j.compositesb.2020.107835

Google Scholar

[21] K. Sugiyama, R. Matsuzaki, A.V. Malakhov, A.N. Polilov, M. Ueda, A. Todoroki, Y. Hirano, 3D printing of optimized composites with variable fiber volume fraction and stiffness using continuous fiber. Compos. Sci. Technol. 186 (2020) 107905.

DOI: 10.1016/j.compscitech.2019.107905

Google Scholar

[22] N. Li, G. Link, T. Wang, V. Ramopoulos, D. Neumaier, J. Hofele, M. Walter, J. Jelonnek, Path-designed 3D printing for topological optimized continuous carbon fibre reinforced composite structures, Compos. Part B-Eng. 182 (2020) 107612.

DOI: 10.1016/j.compositesb.2019.107612

Google Scholar

[23] Z. Hou, X. Tian, J. Zhang, Z. Zheng, L. Zhe, D. Li, A.V. Malakhov, A.N. Polilov, Optimization design and 3D printing of curvilinear fiber reinforced variable stiffness composites, Compos. Sci. Technol. 201 (2021) 108502.

DOI: 10.1016/j.compscitech.2020.108502

Google Scholar

[24] T. Shafighfard, T.A. Cender, E. Demir, Additive manufacturing of compliance optimized variable stiffness composites through short fiber alignment along curvilinear paths, Addit. Manuf. 37 (2021) 101728.

DOI: 10.1016/j.addma.2020.101728

Google Scholar