[1]
J.-Y. Lee, J. An, C.K. Chua, Fundamentals and applications of 3D printing for novel materials, Applied Materials Today. 7 (2017) 120–133.
DOI: 10.1016/j.apmt.2017.02.004
Google Scholar
[2]
T.D. Ngo, A. Kashani, G. Imbalzano, K.T.Q. Nguyen, D. Hui, Additive manufacturing (3D printing): A review of materials, methods, applications and challenges, Composites Part B: Engineering. 143 (2018) 172–196.
DOI: 10.1016/j.compositesb.2018.02.012
Google Scholar
[3]
S.C. Ligon, R. Liska, J. Stampfl, M. Gurr, R. Mülhaupt, Polymers for 3D Printing and Customized Additive Manufacturing, Chemical Reviews. 117 (2017) 10212–10290.
DOI: 10.1021/acs.chemrev.7b00074
Google Scholar
[4]
J.R.C. Dizon, A.H. Espera Jr., Q. Chen, R.C. Advincula, Mechanical characterization of 3D-printed polymers, Additive Manufacturing. 20 (2018) 44–67.
DOI: 10.1016/j.addma.2017.12.002
Google Scholar
[5]
L. Li, K. Nagai, F. Yin, Progress in cold roll bonding of metals, Science and Technology of Advanced Materials. 9 (2008) 023001(11).
DOI: 10.1088/1468-6996/9/2/023001
Google Scholar
[6]
T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang, Additive manufacturing of metallic components – Process, structure and properties, Progress in Materials Science. 92 (2018) 112–224.
DOI: 10.1016/j.pmatsci.2017.10.001
Google Scholar
[7]
S.A. Barannikova, Y.V. Li, A.G. Lunev, G.V. Shlyakhova, L.B. Zuev, Structure and Plastic Flow Heterogeneities of the 12Kh18N9T Steel–St3 Steel Bimetal during Tension, Russian Metallurgy (Metally). 2018 (2018) 383–388.
DOI: 10.1134/s003602951804002x
Google Scholar
[8]
A. Hinojos, J. Mireles, A. Reichardt, P. Frigola, P. Hosemann, L.E. Murr, R.B. Wicker, Joining of Inconel 718 and 316 Stainless Steel using electron beam melting additive manufacturing technology, Materials & Design. 94 (2016) 17–27.
DOI: 10.1016/j.matdes.2016.01.041
Google Scholar
[9]
D.C. Hofmann, S. Roberts, R. Otis, J. Kolodziejska, R.P. Dillon, J. Suh, A.A. Shapiro, Z.-K. Li, J.-P. Borgonia, Developing Gradient Metal Alloys through Radial Deposition Additive Manufacturing, Scientific Reports. 4 (2014) 5357.
DOI: 10.1038/srep05357
Google Scholar
[10]
L.B. Zuev, Autowave Mechanics of Plastic Flow, Springer Tracts in Mechanical Engineering. (2021) 245–274.
Google Scholar
[11]
L.B. Zuev, V.I. Danilov and M.V. Nadezhkin, A Scale Effect Accompanying Autowave Plastic Strain, Technical Physics Letters. 46 (2020) 851–853.
DOI: 10.1134/s1063785020090151
Google Scholar
[12]
V. Utyaganova, A. Filippov, S. Tarasov, N. Shamarin, D. Gurianov, A. Vorontsov, A. Chumaevskii, S. Fortuna, N. Savchenko, V. Rubtsov, E. Kolubaev, Characterization of AA7075/AA5356 gradient transition zone in an electron beam wire-feed additive manufactured sample, Materials Characterization. 172 (2021) 110867(12).
DOI: 10.1016/j.matchar.2020.110867
Google Scholar
[13]
L.B. Zuev, V.V. Gorbatenko, K.V. Pavlichev, Elaboration of speckle photography techniques for plastic flow analyses, Measurement Science and Technology. 21 (2010) 054014.
DOI: 10.1088/0957-0233/21/5/054014
Google Scholar
[14]
G. Ananthakrishna, Current theoretical approaches to collective behavior of dislocations, Physics Reports 440. (2007) 113–259.
DOI: 10.1016/j.physrep.2006.10.003
Google Scholar
[15]
L.B. Zuev, Autowave processes of the localization of plastic flow in active media subjected to deformation, The Physics of Metals and Metallography. 118 (2017) 810–819.
DOI: 10.1134/s0031918x17060114
Google Scholar