[1]
B.M. Klebanov, D. Barlam, F.E. Nystrom, Machine elements: life and design, CRC Press (2008).
Google Scholar
[2]
K. Zum, G. Eldis, Abrasive Wear of White Cast Irons, Wear. 64 (1980) 175–194.
DOI: 10.1016/0043-1648(80)90101-5
Google Scholar
[3]
M.A. Mehdi, J. Sajjad, A. Hassan, Abrasive Wear Behavior of High Chromium Cast Iron and Hadfield Steel—A Comparison, Journal of Iron and Steel Research International. 19(4) (2012) 43-50.
DOI: 10.1016/s1006-706x(12)60086-7
Google Scholar
[4]
A.V. Shchegolev, V. F. Aulov, A.V. Ishkov, Modification of wear-resistant coatings of Fe-Cr-C system based on the Cr3C2 obtained with help of SHS method, IOP Conference Series: Materials Science and Engineering. 441 (2018) 012047.
DOI: 10.1088/1757-899x/441/1/012047
Google Scholar
[5]
Y.J. Zhou, Y. Zhang, Effect of Cu addition on the microstructure and mechanical properties of AlCoCrFeNiTi0.5 solid-solution alloy, Journal of Alloys and Compounds. 466(1-2) (2008) 201-204.
DOI: 10.1016/j.jallcom.2007.11.110
Google Scholar
[6]
V.M. Kishurov, V.N. Ippolitov, M.V. Kishurov, Increasing the life of coated high-speed steel tools, Russian Engineering Research. 33(12) (2013) 727-730.
DOI: 10.3103/s1068798x13120083
Google Scholar
[7]
D.A. Ivanov, O.N. Zasukhin, Action Time and Amplitude–Frequency Characteristics of Gas Pulses during the Treatment of Steel Machine Components by Pulsed Gas Flows. Russian Metallurgy (Metally), 1 (2019) 39-43.
DOI: 10.1134/s0036029519130123
Google Scholar
[8]
C.T. Liu, Journal of Applied Physics, Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. 109 (2011) 103505.
DOI: 10.1063/1.3587228
Google Scholar
[9]
S. Guo, C.T. Liu, Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase, Progressin Science: Materials International. 21(6) (2011) 433-446.
DOI: 10.1016/s1002-0071(12)60080-x
Google Scholar
[10]
S. Chang, Y. Hong, S. Chen, Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements, Materials Chemistry and Physics. 103(1) (2007) 41-46.
DOI: 10.1016/j.matchemphys.2007.01.003
Google Scholar
[11]
S.S. Mahlalela, Microstructural characterization of laser beam and gas tungsten arc welded zirconium-2.5 Nb, Journal of the Southern African Institute of Mining and Metallurgy. 117(10) (2017) 947-953.
DOI: 10.17159/2411-9717/2017/v117n10a4
Google Scholar
[12]
X.L. Gao, J. Liu, ffect of the overlapping factor on the microstructure and mechanical properties of pulsed Nd:YAG laser welded Ti6Al4V sheets, Materials Characterization. 93 (2014) 136-149.
DOI: 10.1016/j.matchar.2014.04.005
Google Scholar
[13]
Q. Wan, X. Bai, Impact of high dose krypton ion irradiation on corrosion behavior of laser beam welded Zircaloy-4, Materials Research Bulletin. 41(2) (2006) 387-395.
DOI: 10.1016/j.materresbull.2005.08.007
Google Scholar
[14]
D.H. Jeong, Fatigue Characteristics of Laser Welded Zircaloy Thin Sheet, International Journal of Modern Physics: Conference Series. 6 (2012) 367-372.
DOI: 10.1142/s2010194512003455
Google Scholar
[15]
Q. Han, D. Kim, D. Kim, Laser pulsed welding in thin sheets of Zircaloy-4, Journal of Materials Processing Technology. 212 (2012) 1116-1122.
DOI: 10.1016/j.jmatprotec.2011.12.022
Google Scholar
[16]
J.M. Guilemany, J.M. Miguel, Role of heat treatments in the improvement of the sliding wear properties of cr3c2-nicr coatings, Surface and Coating Technology. 157 (2002) 207–213.
DOI: 10.1016/s0257-8972(02)00148-2
Google Scholar
[17]
V.V. Ivanaysky, N.T. Krivochurov, V.F. Aulov, Improving the Characteristics of Wear-Resistant Coatings Obtained by HDTV-Boration, their Modification by Intermetallic Compounds of Fe-Al and Ni-Al Systems, Materials Science Forum. 992 (2020) 640-646.
DOI: 10.4028/www.scientific.net/msf.992.640
Google Scholar