[1]
Zhu Q., Zhang X., Li S., Liu C. 2019 Communication-electrodeposition of nano-twinned Cu in void-free filling for blind microvia of high density interconnect Journal of The Electrochemical Society. 166(1) 3097-3099.
DOI: 10.1149/2.0131901jes
Google Scholar
[2]
Liang C. L., Lin K. L. Non-equilibrium supersaturation behavior in a Cu/Sn/Cu interconnect induced by room temperature electromigration Journal of Alloys and Compounds. 789(15) 336-344.
DOI: 10.1016/j.jallcom.2019.03.055
Google Scholar
[3]
Baklanov M. R., Adelmann C., Zhao L., Gendt S. D. 2015 Advanced interconnects: materials, processing, and reliability ECS Journal of Solid State Science and Technology. 4(1) Y1-Y4.
DOI: 10.1149/2.0271501jss
Google Scholar
[4]
Shang J., Hao J. X., Hang T., Li M. 2018 Diffusion barrier effect of Ta/Ti bilayer in organic dielectric/Cu interconnects Thin Solid Films. 653(1) 113-118.
DOI: 10.1016/j.tsf.2018.03.025
Google Scholar
[5]
Mardani S., Norström H., Smith U. 2016 Electromigration behavior of Cu metallization interfacing with Ta versus TaN at high temperatures Journal of Vacuum Science & Technology B. 34.
DOI: 10.1116/1.4967372
Google Scholar
[6]
Laurila T., Zeng K., Kivilahti J. K. 2000 Failure mechanism of Ta diffusion barrier between Cu and Si Journal of Applied Physics. 88 3377-3384.
DOI: 10.1063/1.1288692
Google Scholar
[7]
Ono H., Nakano T., Ohta T. 1994 Diffusion barrier effects of transition metals for Cu/M/Si multilayers (M=Cr, Ti, Nb, Mo, Ta, W) Applied Physics Letters. 64(12) 1511-1513.
DOI: 10.1063/1.111875
Google Scholar
[8]
Fang J. S., Chen J. H., Chen G. S., Cheng Y. L., Chin T. S. 2016 Sequential growth of copper film on TaN/Ta barrier substrates by alternation of Pb-UPD and Cu-SLRR Electrochimica Acta. 206(10) 45-51.
DOI: 10.1016/j.electacta.2016.04.129
Google Scholar
[9]
Lane M., Dauskardt R. H. 2000 Adhesion and reliability of copper interconnects with Ta and TaN barrier layers Journal of Materials Research. 15(1) 203-211.
DOI: 10.1557/jmr.2000.0033
Google Scholar
[10]
Zantye P. B., Kumar A., Sikder A. K. 2004 Chemical mechanical planarization for microelectronics applications Materials Science and Engineering: R: Reports. 45(3-6) 89-220.
DOI: 10.1016/j.mser.2004.06.002
Google Scholar
[11]
Wrschka P., Hernandez J., Oehrlein G. S. 2000 Chemical mechanical planarization of copper damascene structures Journal of The Electrochemical Society. 147(2) 706-712.
DOI: 10.1149/1.1393256
Google Scholar
[12]
Xu Q., Fang J., Chen L. 2016 A chip-scale chemical mechanical planarization model for copper interconnect structures Microelectronic Engineering 149(5)14-24.
DOI: 10.1016/j.mee.2015.08.012
Google Scholar
[13]
Bowler N., Huang Y. Q. 2005 Electrical conductivity measurement of metal plates using broadband eddy-current and four-point methods Measurement Science and Technology. 16(11) 2193-2200.
DOI: 10.1088/0957-0233/16/11/009
Google Scholar
[14]
Fujita T., Kitade K. 2019 Development of endpoint detection using optical transmittance and magnetic permeability based on skin effect in chemical mechanical planarization Precision Engineering. 57 95-103.
DOI: 10.1016/j.precisioneng.2019.03.004
Google Scholar
[15]
Wang Z., Yu Y. 2019 Thickness and Conductivity Measurement of Multilayered Electricity-Conducting Coating by Pulsed Eddy Current Technique: Experimental Investigation IEEE Transactions on Instrumentation and Measurement. 68(9) 3166-3172.
DOI: 10.1109/tim.2018.2872386
Google Scholar
[16]
Kjeldby S. B., Evenstad O. M., Cooil S. P., Wells J. W. 2017 Probing dimensionality using a simplified 4-probe method Journal of Physics: Condensed Matter. 29(39) 1-6.
DOI: 10.1088/1361-648x/aa8296
Google Scholar
[17]
Kim M.-G., Pahk H.-J. 2018 Fast and reliable measurement of thin film thickness profile based on wavelet transform in spectrally resolved whitelight interferometry International Journal of Precision Engineering and Manufacturing. 19(2) 213-219.
DOI: 10.1007/s12541-018-0024-0
Google Scholar
[18]
Dmitriev S. F., Malikov V. N., Ishkov A. V. 2018 Application of an eddy-current method to measure electrical conductivity of thin films IOP Conf. Series: Materials Science and Engineering 441 012029.
DOI: 10.1088/1757-899x/441/1/012029
Google Scholar
[19]
Li W., Wang H, Feng Z. 2016 Non-contact online thickness measurement system for metal films based on eddy current sensing with distance tracking technique Review of Scientific Instruments. 87(4) 1-9.
DOI: 10.1063/1.4947234
Google Scholar
[20]
Wang H., Li W., Feng Z. 2015 Noncontact thickness measurement of metal films using eddy-current sensors immune to distance variation IEEE Transactions on Instrumentation and Measurement 64(9) 2557-2564.
DOI: 10.1109/tim.2015.2406053
Google Scholar
[21]
Li W., Ye Y., Zhang K. 2017 A thickness measurement system for metal films based on eddy current method with phase detection IEEE Transactions on Industrial Electronics. 64(5) 3940-3949.
DOI: 10.1109/tie.2017.2650861
Google Scholar
[22]
Sakran F., Golosovsky M., Goldberger H. 2001 High frequency eddy-current technique for thickness measurement of micronthick conducting layers Applied Physics Letters. 78(11)1634-1636.
DOI: 10.1063/1.1355298
Google Scholar
[23]
Yin W. L., Xu K. 2016 A novel triple-coil electromagnetic sensor for thickness measurement immune to lift-off variations IEEE Transactions on Instrumentation and Measurement. 65(1) 164-169.
DOI: 10.1109/tim.2015.2479106
Google Scholar