[1]
E.N. Potapova, History of binders: a textbook, St. Petersburg: Lanbook, (2018).
Google Scholar
[2]
A.A. Khalil, A. Tawfik, A.A. Hegazy, Plaster composites modified morphology with enhanced compressive strength and water resistance characteristics, Constr. Build. Mater. 167 (2018) 55-64. https://doi.org/10.1016/j.conbuildmat.2018.01.165.
DOI: 10.1016/j.conbuildmat.2018.01.165
Google Scholar
[3]
M.J. Morales-Conde, C. Rodriguez-Linän, M.A. Pedreno-Rojas, Physical and mechanical properties of wood-gypsum composites from demolition material in rehabilitation works, Constr. Build. Mater. 114 (2016) 6-14. https://doi.org/10.1016/j.conbuildmat.2016.03.137.
DOI: 10.1016/j.conbuildmat.2016.03.137
Google Scholar
[4]
N. Kondratieva, M. Barre, F. Goutenoire, M. Sanytsky, Study of modified gypsum binder, Constr. Build. Mater. 149 (2017) 535-542. https://doi.org/10.1016/j.conbuildmat.2017.05.140.
DOI: 10.1016/j.conbuildmat.2017.05.140
Google Scholar
[5]
F. Iucolano, D. Caputo, F. Leboffe, B. Liguori, Mechanical behavior of plaster reinforced with abaca fibers, Constr. Build. Mater. 99 (2015) 184-191. https://doi.org/10.1016/j.conbuildmat.2015.09.020.
DOI: 10.1016/j.conbuildmat.2015.09.020
Google Scholar
[6]
S. Gutierrez-Gonzalez, J. Gadea, A. Rodriguez, M.T. Blanco-Varela, V. Calderon, Compatibility between gypsum and polyamide powder waste to produce lightweight plaster with enhanced thermal properties, Constr. Build. Mater. 34 (2012) 179-185. https://doi.org/10.1016/j.conbuildmat.2012.02.061.
DOI: 10.1016/j.conbuildmat.2012.02.061
Google Scholar
[7]
J.A. Mohandesi, A. Sangghaleh, A. Nazari, N. Pourjavad, Analytical modeling of strength in randomly oriented PP and PPTA short fiber reinforced gypsum composites, Comput. Mater. Sci. 50 (2011) 1619-1624. https://doi.org/10.1016/j.commatsci.2010.12.020.
DOI: 10.1016/j.commatsci.2010.12.020
Google Scholar
[8]
M. del Río Merino, C. Pérez García, S. Romaniega Piñeiro, Refuerzo de las escayolas mediante fibras de lana mineral procedentes del reciclaje de RCD, Actas del I Congreso Internacional de Construcción Sostenible y Soluciones Ecoeficientes: Sevilla 20–22 May 2013 (2013), pp.136-145.
DOI: 10.20868/upm.thesis.43030
Google Scholar
[9]
H. Tabataba, M. Janbaz, A. Nabizadeh, Mechanical and thermo-gravimetric properties of unsaturated polyester q resin blended with FGD gypsum, Constr. Build. Mater. 163 (2018) 438-445.
DOI: 10.1016/j.conbuildmat.2017.12.041
Google Scholar
[10]
T.S. Alomayri, The microstructural and mechanical properties of geopolymer composites containing glass microfibers, Ceramics International 43(5) (2017) 4576-4582. https://doi.org/10.1016/j.ceramint.2016.12.118.
DOI: 10.1016/j.ceramint.2016.12.118
Google Scholar
[11]
F.N. Rabinovich, Composites based on dispersion-reinforced concrete. Questions of theory and design, technology, construction, Publishing house ASV, Moscow, (2004).
Google Scholar
[12]
A. Jameran, I. S. Ibrahim, S. Hamizah S. Yazan, Siti Nor A. A. Rahima, Mechanical properties of steel-polypropylene fibre reinforced concrete under elevated temperature, Procedia Engineering 125 ( 2015 ) 818–824. https://doi.org/10.1016/j.proeng.2015.11.146.
DOI: 10.1016/j.proeng.2015.11.146
Google Scholar
[13]
O. Gencel, J. Jose, M. Sütçü, F. Koksal, F.P.A. Rabanal, Gonzalo martínez-barrera, A novel lightweight gypsum composite with diatomite and polypropylene fibers, Constr. Build. Mater. 113 (2016) 732-740. https://doi.org/10.1016/j.conbuildmat.2016.03.125.
DOI: 10.1016/j.conbuildmat.2016.03.125
Google Scholar
[14]
R. Mukhametrakhimov, A. Galautdinov, P. Gorbunova, T. Gorbunova, Water-resistant fiber-reinforced gypsum cement-pozzolanic composites, E3S Web of Conferences 138, 01011 (2019) https://doi.org/10.1051/e3sconf/201913801011.
DOI: 10.1051/e3sconf/201913801011
Google Scholar
[15]
E. Potapova, A.K. Nian, E. Tsvetkova, H.-B. Fischer, Modification of the structure of gypsum-cement-pozzolanic binder// MATEC Web of Conferences 329 (2020) 04007. https://doi.org/10.1051/matecconf/202032904007.
DOI: 10.1051/matecconf/202032904007
Google Scholar
[16]
P. Sukontasukkul, P. Pongsopha, P. Chindaprasirt, S. Songpiriyakij's, Flexural performance and toughness of hybrid steel and polypropylene fibre reinforced geopolymer, Constr. Build. Mater. 161 (2018) 37-44. https://doi.org/10.1016/j.conbuildmat.2017.11.122.
DOI: 10.1016/j.conbuildmat.2017.11.122
Google Scholar
[17]
M.J. Gázquez, J.P. Bolívar, V.G. Federico, G.-T. Rafael, A. Caparros, Evaluation of the use of TiO2 industry red gypsum waste in cement production, Cement and Concrete Composites 37 (2013) 76-81. https://doi.org/10.1016/j.cemconcomp.2012.12.003.
DOI: 10.1016/j.cemconcomp.2012.12.003
Google Scholar
[18]
R.X. Magallanes-Rivera, C.A. Juarez-Alvarado, P. Valdez, J.M. Mendoza-Rangel, Modified gypsum compounds: an ecological-economical choice to improve traditional plasters, Constr. Build. Mater. 37 (2012) 591-596. https://doi.org/10.1016/j.conbuildmat.2012.07.054.
DOI: 10.1016/j.conbuildmat.2012.07.054
Google Scholar
[19]
B. Aranda, O. Guillou, C. Lanos, C. Daiguebonne, S. Freslon, C. Tessier, M. Laurans, C. Baux, Effect of multiphasic structure of binder particles on the mechanical properties of a gypsum-based material, Constr. Build. Mater. 102 (2016) 175-181. https://doi.org/10.1016/j.conbuildmat.2015.10.171.
DOI: 10.1016/j.conbuildmat.2015.10.171
Google Scholar
[20]
M. Arikan, K. Sobolev, The optimization of gypsum based composite material, Cem. Concr. Res. 12 (2002) 1725-1728. https://doi.org/10.1016/S0008-8846(02)00858-X.
DOI: 10.1016/s0008-8846(02)00858-x
Google Scholar
[21]
A. Vimmrovä, M. Keppert, O. Michalko, R. Cerny, Calcined gypsum-lime-metakaolin binders: Design of optimal composition, Cement and Concrete Composites 52 (2014) 91-96. https://doi.org/10.1016/j.cemconcomp.2014.05.011.
DOI: 10.1016/j.cemconcomp.2014.05.011
Google Scholar
[22]
M.S. Baspinar, E. Kahraman, Modifications in the properties of gypsum construction element via addition of expanded macroporous silica granules, Constr. Build. Mater. 25 (2011) 3327-3333. https://doi.org/10.1016/j.conbuildmat.2011.03.022.
DOI: 10.1016/j.conbuildmat.2011.03.022
Google Scholar
[23]
M. Murat, A. Attari, Modification of some physical properties of gypsum plaster by addition of clay minerals, Cem. Concr. Res. 21 (1991) 378-387. https://doi.org/10.1016/0008-8846(91)90019-E.
DOI: 10.1016/0008-8846(91)90019-e
Google Scholar
[24]
E.N. Potapova, I.V. Isaeva, Increasing the water resistance of the gypsum binder, Construcrion Materials 7 (2012) 20-23.
Google Scholar
[25]
S.E. Kurdyumova, E.N. Potapova, Influence of polypropylene fibers on the properties of gypsum-cement-pozzolanic binder, Advances in chemistry and chemical technology 31(184) (2017) 55-57.
Google Scholar
[26]
E. Potapova, A. Manushina, A. Urbanov, Effect of fibers on the properties of gypsum cement-pozzolanic binder, ZKG International 11 (2017) 50-57.
Google Scholar
[27]
L. Hui-Ji, W. Chun-Chang, W. Mei, Z. Qing-Wen, L. Ying-Ying, Y. Hai-Bo, C. Yun, Structures and dynamic hydration of CaSO4 clusters in supersaturated solutions: A molecular dynamics simulation study, Journal of Molecular Liquids 324 (2021) 115104. https://doi.org/10.1016/j.molliq.2020.115104.
DOI: 10.1016/j.molliq.2020.115104
Google Scholar
[28]
A. Pundir, M. Garg, R. Singh, Evaluation of properties of gypsum plaster-superplasticizer blends of improved performance, Journal of Building Engineering 4 (2015) 223-230. https://doi.org/10.1016/j.jobe.2015.09.012.
DOI: 10.1016/j.jobe.2015.09.012
Google Scholar
[29]
C. Wenxiang, Y. Wei, Y. Suhong, P. Jiahui, L. Jing, A novel low-density thermal insulation gypsum reinforced with superplasticizer, Constr. Build. Mater. 278 (2021) 122421. https://doi.org/10.1016/j.conbuildmat.2021.12242.
Google Scholar