Gypsum Composite Reinforced with Polymer Fibers

Article Preview

Abstract:

Composite gypsum binders harden quickly, gain strength quickly and have positive environmental properties. Moreover, they are characterized by increased moisture resistance, which significantly expands the field of application of such gypsum materials. Dispersed reinforcement of composite gypsum binders with polypropylene fibers makes it possible to obtain composites characterized by high performance properties. On basis of developed compositions of gypsum-cement-pozzolanic and composite gypsum binders with polymer fibers, gypsum composites have been created, characterized by increased strength, water resistance, frost and corrosion resistance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

880-886

Citation:

Online since:

February 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E.N. Potapova, History of binders: a textbook, St. Petersburg: Lanbook, (2018).

Google Scholar

[2] A.A. Khalil, A. Tawfik, A.A. Hegazy, Plaster composites modified morphology with enhanced compressive strength and water resistance characteristics, Constr. Build. Mater. 167 (2018) 55-64. https://doi.org/10.1016/j.conbuildmat.2018.01.165.

DOI: 10.1016/j.conbuildmat.2018.01.165

Google Scholar

[3] M.J. Morales-Conde, C. Rodriguez-Linän, M.A. Pedreno-Rojas, Physical and mechanical properties of wood-gypsum composites from demolition material in rehabilitation works, Constr. Build. Mater. 114 (2016) 6-14. https://doi.org/10.1016/j.conbuildmat.2016.03.137.

DOI: 10.1016/j.conbuildmat.2016.03.137

Google Scholar

[4] N. Kondratieva, M. Barre, F. Goutenoire, M. Sanytsky, Study of modified gypsum binder, Constr. Build. Mater. 149 (2017) 535-542. https://doi.org/10.1016/j.conbuildmat.2017.05.140.

DOI: 10.1016/j.conbuildmat.2017.05.140

Google Scholar

[5] F. Iucolano, D. Caputo, F. Leboffe, B. Liguori, Mechanical behavior of plaster reinforced with abaca fibers, Constr. Build. Mater. 99 (2015) 184-191. https://doi.org/10.1016/j.conbuildmat.2015.09.020.

DOI: 10.1016/j.conbuildmat.2015.09.020

Google Scholar

[6] S. Gutierrez-Gonzalez, J. Gadea, A. Rodriguez, M.T. Blanco-Varela, V. Calderon, Compatibility between gypsum and polyamide powder waste to produce lightweight plaster with enhanced thermal properties, Constr. Build. Mater. 34 (2012) 179-185. https://doi.org/10.1016/j.conbuildmat.2012.02.061.

DOI: 10.1016/j.conbuildmat.2012.02.061

Google Scholar

[7] J.A. Mohandesi, A. Sangghaleh, A. Nazari, N. Pourjavad, Analytical modeling of strength in randomly oriented PP and PPTA short fiber reinforced gypsum composites, Comput. Mater. Sci. 50 (2011) 1619-1624. https://doi.org/10.1016/j.commatsci.2010.12.020.

DOI: 10.1016/j.commatsci.2010.12.020

Google Scholar

[8] M. del Río Merino, C. Pérez García, S. Romaniega Piñeiro, Refuerzo de las escayolas mediante fibras de lana mineral procedentes del reciclaje de RCD, Actas del I Congreso Internacional de Construcción Sostenible y Soluciones Ecoeficientes: Sevilla 20–22 May 2013 (2013), pp.136-145.

DOI: 10.20868/upm.thesis.43030

Google Scholar

[9] H. Tabataba, M. Janbaz, A. Nabizadeh, Mechanical and thermo-gravimetric properties of unsaturated polyester q resin blended with FGD gypsum, Constr. Build. Mater. 163 (2018) 438-445.

DOI: 10.1016/j.conbuildmat.2017.12.041

Google Scholar

[10] T.S. Alomayri, The microstructural and mechanical properties of geopolymer composites containing glass microfibers, Ceramics International 43(5) (2017) 4576-4582. https://doi.org/10.1016/j.ceramint.2016.12.118.

DOI: 10.1016/j.ceramint.2016.12.118

Google Scholar

[11] F.N. Rabinovich, Composites based on dispersion-reinforced concrete. Questions of theory and design, technology, construction, Publishing house ASV, Moscow, (2004).

Google Scholar

[12] A. Jameran, I. S. Ibrahim, S. Hamizah S. Yazan, Siti Nor A. A. Rahima, Mechanical properties of steel-polypropylene fibre reinforced concrete under elevated temperature, Procedia Engineering 125 ( 2015 ) 818–824. https://doi.org/10.1016/j.proeng.2015.11.146.

DOI: 10.1016/j.proeng.2015.11.146

Google Scholar

[13] O. Gencel, J. Jose, M. Sütçü, F. Koksal, F.P.A. Rabanal, Gonzalo martínez-barrera, A novel lightweight gypsum composite with diatomite and polypropylene fibers, Constr. Build. Mater. 113 (2016) 732-740. https://doi.org/10.1016/j.conbuildmat.2016.03.125.

DOI: 10.1016/j.conbuildmat.2016.03.125

Google Scholar

[14] R. Mukhametrakhimov, A. Galautdinov, P. Gorbunova, T. Gorbunova, Water-resistant fiber-reinforced gypsum cement-pozzolanic composites, E3S Web of Conferences 138, 01011 (2019) https://doi.org/10.1051/e3sconf/201913801011.

DOI: 10.1051/e3sconf/201913801011

Google Scholar

[15] E. Potapova, A.K. Nian, E. Tsvetkova, H.-B. Fischer, Modification of the structure of gypsum-cement-pozzolanic binder// MATEC Web of Conferences 329 (2020) 04007. https://doi.org/10.1051/matecconf/202032904007.

DOI: 10.1051/matecconf/202032904007

Google Scholar

[16] P. Sukontasukkul, P. Pongsopha, P. Chindaprasirt, S. Songpiriyakij's, Flexural performance and toughness of hybrid steel and polypropylene fibre reinforced geopolymer, Constr. Build. Mater. 161 (2018) 37-44. https://doi.org/10.1016/j.conbuildmat.2017.11.122.

DOI: 10.1016/j.conbuildmat.2017.11.122

Google Scholar

[17] M.J. Gázquez, J.P. Bolívar, V.G. Federico, G.-T. Rafael, A. Caparros, Evaluation of the use of TiO2 industry red gypsum waste in cement production, Cement and Concrete Composites 37 (2013) 76-81. https://doi.org/10.1016/j.cemconcomp.2012.12.003.

DOI: 10.1016/j.cemconcomp.2012.12.003

Google Scholar

[18] R.X. Magallanes-Rivera, C.A. Juarez-Alvarado, P. Valdez, J.M. Mendoza-Rangel, Modified gypsum compounds: an ecological-economical choice to improve traditional plasters, Constr. Build. Mater. 37 (2012) 591-596. https://doi.org/10.1016/j.conbuildmat.2012.07.054.

DOI: 10.1016/j.conbuildmat.2012.07.054

Google Scholar

[19] B. Aranda, O. Guillou, C. Lanos, C. Daiguebonne, S. Freslon, C. Tessier, M. Laurans, C. Baux, Effect of multiphasic structure of binder particles on the mechanical properties of a gypsum-based material, Constr. Build. Mater. 102 (2016) 175-181. https://doi.org/10.1016/j.conbuildmat.2015.10.171.

DOI: 10.1016/j.conbuildmat.2015.10.171

Google Scholar

[20] M. Arikan, K. Sobolev, The optimization of gypsum based composite material, Cem. Concr. Res. 12 (2002) 1725-1728. https://doi.org/10.1016/S0008-8846(02)00858-X.

DOI: 10.1016/s0008-8846(02)00858-x

Google Scholar

[21] A. Vimmrovä, M. Keppert, O. Michalko, R. Cerny, Calcined gypsum-lime-metakaolin binders: Design of optimal composition, Cement and Concrete Composites 52 (2014) 91-96. https://doi.org/10.1016/j.cemconcomp.2014.05.011.

DOI: 10.1016/j.cemconcomp.2014.05.011

Google Scholar

[22] M.S. Baspinar, E. Kahraman, Modifications in the properties of gypsum construction element via addition of expanded macroporous silica granules, Constr. Build. Mater. 25 (2011) 3327-3333. https://doi.org/10.1016/j.conbuildmat.2011.03.022.

DOI: 10.1016/j.conbuildmat.2011.03.022

Google Scholar

[23] M. Murat, A. Attari, Modification of some physical properties of gypsum plaster by addition of clay minerals, Cem. Concr. Res. 21 (1991) 378-387. https://doi.org/10.1016/0008-8846(91)90019-E.

DOI: 10.1016/0008-8846(91)90019-e

Google Scholar

[24] E.N. Potapova, I.V. Isaeva, Increasing the water resistance of the gypsum binder, Construcrion Materials 7 (2012) 20-23.

Google Scholar

[25] S.E. Kurdyumova, E.N. Potapova, Influence of polypropylene fibers on the properties of gypsum-cement-pozzolanic binder, Advances in chemistry and chemical technology 31(184) (2017) 55-57.

Google Scholar

[26] E. Potapova, A. Manushina, A. Urbanov, Effect of fibers on the properties of gypsum cement-pozzolanic binder, ZKG International 11 (2017) 50-57.

Google Scholar

[27] L. Hui-Ji, W. Chun-Chang, W. Mei, Z. Qing-Wen, L. Ying-Ying, Y. Hai-Bo, C. Yun, Structures and dynamic hydration of CaSO4 clusters in supersaturated solutions: A molecular dynamics simulation study, Journal of Molecular Liquids 324 (2021) 115104. https://doi.org/10.1016/j.molliq.2020.115104.

DOI: 10.1016/j.molliq.2020.115104

Google Scholar

[28] A. Pundir, M. Garg, R. Singh, Evaluation of properties of gypsum plaster-superplasticizer blends of improved performance, Journal of Building Engineering 4 (2015) 223-230. https://doi.org/10.1016/j.jobe.2015.09.012.

DOI: 10.1016/j.jobe.2015.09.012

Google Scholar

[29] C. Wenxiang, Y. Wei, Y. Suhong, P. Jiahui, L. Jing, A novel low-density thermal insulation gypsum reinforced with superplasticizer, Constr. Build. Mater. 278 (2021) 122421. https://doi.org/10.1016/j.conbuildmat.2021.12242.

Google Scholar