Research of Wear Resistance of Medical Materials during Friction with High-Molecular Polyethylene

Article Preview

Abstract:

The results of experimental modeling of the wear characteristics of medical materials during friction with high molecular weight polyethylene under conditions close to the operation of a tribological pair of a hip joint prosthesis are presented.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

935-939

Citation:

Online since:

February 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. B. Nasab and M. R. Hassan, Metallic Biomaterials of Knee and Hip-A Review, Trends in Biomaterials and Artificial Organs, vol. 24, pp.69-82, (2010).

Google Scholar

[2] M. Navarro, A. Michiardi, O. Castano, and J. Planell, Biomaterials in orthopaedics, Journal of the Royal Society Interface, vol. 5, pp.1137-1158, (2008).

DOI: 10.1098/rsif.2008.0151

Google Scholar

[3] R. Narayan, Biomedical materials: Springer, (2009).

Google Scholar

[4] J. R. Davis, Handbook of materials for medical devices: ASM international, (2003).

Google Scholar

[5] J. B. Brunski, Chapter i.2.3 - Metals: Basic Principles, in Biomaterials Science (Third Edition), D. R. Buddy, et al., Eds., ed: Academic Press, 2013, pp.111-119.

Google Scholar

[6] E. Ingham and J. Fisher, Biological reactions to wear debris in total joint replacement,, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, vol. 214, pp.21-37, (2000).

DOI: 10.1243/0954411001535219

Google Scholar

[7] M. Geetha, A. Singh, R. Asokamani, and A. Gogia, Ti based biomaterials, the ultimate choice for orthopaedic implants–A review,, Progress in Materials Science, vol. 54, pp.397-425, (2009).

DOI: 10.1016/j.pmatsci.2008.06.004

Google Scholar

[8] W. C. Head, D. J. Bauk, and R. H. Emerson Jr, Titanium as the material of choice for cementless femoral components in total hip arthroplasty,, Clinical Orthopaedics and Related Research, vol. 311, pp.85-90, (1995).

Google Scholar

[9] M. Long and H. Rack, Titanium alloys in total joint replacement—a materials science perspective,, Biomaterials, vol. 19, pp.1621-1639, (1998).

DOI: 10.1016/s0142-9612(97)00146-4

Google Scholar

[10] S. Teoh, Fatigue of biomaterials: a review,, International Journal of Fatigue, vol. 22, pp.825-837, (2000).

Google Scholar

[11] T. M. Wright, S. B. Goodman, and H. C. Amstutz, Implant wear: the future of total joint replacement: symposium, Oakbrook, Illinois, September 1995: Amer Academy of Orthopaedic, (1996).

Google Scholar

[12] C. Monograph, Centre d'information du Cobalt,, Brussels, Belgium, vol. 185, (1960).

Google Scholar

[13] W. Belteridge, COBALT AND ITS ALLOYS",, by W. Belteridge, John Wiley & Sons, 159 pages, 1982, (1982).

Google Scholar

[14] J. J. Jacobs, A. K. Skipor, P. F. Doorn, P. Campbell, T. P. Schmalzried, J. Black, and H. C. Amstutz, Cobalt and Chromium Concentrations in Patients With Metal on Metal Total Hip Replacements,, Clinical Orthopaedics and Related Research, vol. 329, pp. S256-S263, (1996).

DOI: 10.1097/00003086-199608001-00022

Google Scholar

[15] A. Marti, Cobalt-base alloys used in bone surgery,, Injury, vol. 31, Supplement 4, pp. D18-D21, (2000).

DOI: 10.1016/s0020-1383(00)80018-2

Google Scholar

[16] W. Brodner, P. Bitzan, V. Meisinger, A. Kaider, F. Gottsauner-Wolf, and R. Kotz, Serum Cobalt Levels After Metal-on-Metal Total Hip Arthroplasty,, The Journal of Bone & Joint Surgery, vol. 85, pp.2168-2173, (2003).

DOI: 10.2106/00004623-200311000-00017

Google Scholar

[17] F. W. Sunderman Jr, Carcinogenicity of metal alloys in orthopedic prostheses: Clinical and experimental studies,, Fundamental and Applied Toxicology, vol. 13, pp.205-216, (1989).

DOI: 10.1016/0272-0590(89)90257-1

Google Scholar

[18] T. Visuri, E. Pukkala, P. Paavolainen, P. Pulkkinen, and E. B. Riska, Cancer Risk After Metal on Metal and Polyethylene on Metal Total Hip Arthroplasty,, Clinical Orthopaedics and Related Research, vol. 329, pp. S280-S289, (1996).

DOI: 10.1097/00003086-199608001-00025

Google Scholar

[19] Spektor V.S., Sarychev S.M., Orlov A.A. The Effect of Surface Conditions on Corrosion Resistance of a CobaltChromium Alloy. Key Engineering Materials Vol. 887, pp.358-363, (2021).

DOI: 10.4028/www.scientific.net/kem.887.358

Google Scholar

[20] Gavryushenko N.S. Research methodology for the quality of friction units of human hip joint endoprostheses. U1 congress of traumatologists and orthopedists, September 9-12, 1997, Nizhny Novgorod, abstracts, p.537.

Google Scholar

[21] Unsworth a. at.al. Soft layer lubrications of artificial Hip joints. Inst. Mech. Eng., 1987, p.219.

Google Scholar

[22] B.R. Rawal, Amit Yadav, Vinod Pare. Life estimation of knee joint prosthesis by combined effect of fatigue and wear. Procedia Technology, 2016, Vol. 23, p.60 – 67.

DOI: 10.1016/j.protcy.2016.03.072

Google Scholar

[23] Celio Gabriel Figueiredo-Pina, Armanda Agostinho Matos Neves, Bruno Miguel Bandarra das Neves. Corrosion-wear evaluation of a UHMWPE/Co–Cr couple in sliding contact under relatively low contact stress in physiological saline solution. Wear, 2011, Vol. 271 p.665– 670.

DOI: 10.1016/j.wear.2010.11.014

Google Scholar

[24] M.M. Stack, J. Rodling, M.T. Mathew, H. Jawan,W. Huang, G. Park, C. Hodge. Micro-abrasion–corrosion of a Co–Cr/UHMWPE couple in Ringer's solution: An approach to construction of mechanism and synergism maps for application to bio-implants . Wear, 2010, Vol. 269 p.376–382.

DOI: 10.1016/j.wear.2010.04.022

Google Scholar