Amorphous-Crystalline Composite Microstructure Formation in Zr46Cu46Al8 Alloy at the Conditions of Selective Laser Melting

Article Preview

Abstract:

Amorphous alloys are promising structural materials because of their high mechanical strength. Their drawbacks are low ductility and severe size restrictions for components obtained by casting. Additive manufacturing by selective laser melting (SLM) consists in successive fusion of small portions of material to add to a growing part. Each portion is subjected to a short thermal cycle favorable for amorphization. Thus, one can build an amorphous part as large as necessary. We study the microstructure of cast samples of a zirconium-based bulk metallic glass after laser processing with the parameters typical for SLM. Scanning electronic microscopy has shown partial crystallization in the heat affected zone of the laser beam. The spatial distribution and the volume fraction of the crystalline phase can be controlled by laser processing parameters. The obtained amorphous-crystalline structures are promising to increase the ductility of bulk metallic glasses.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

959-965

Citation:

Online since:

February 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Grigoriev, S., Tarasova, T., Gusarov, A., Khmyrov, R., Egorov, S. Possibilities of Manufacturing Products from Cermet Compositions Using Nanoscale Powders by Additive Manufacturing Methods //Materials 12, 3425 (2019).

DOI: 10.3390/ma12203425

Google Scholar

[2] Gusarov А., Grigoriev S., Volosova M., Melnik Y., Laskin A., Kotoban D., Okunkova A. On productivity of laser additive manufacturing // Journal of materials processing technology 261, 213-232 (2018).

DOI: 10.1016/j.jmatprotec.2018.05.033

Google Scholar

[3] Grigoriev, S. N., Tarasova, T. V., Gvozdeva, G. O. Solidification behaviour during laser microcladding of Al–Si alloys //Surface and Coatings Technology 268, 303-309 (2015).

DOI: 10.1016/j.surfcoat.2014.08.001

Google Scholar

[4] G. Yang, X. Lin, F. Liu, Q. Hu, L. Ma, J. Li, W. Huang, Laser solid forming Zr-based bulk metallic glass,, Intermetallics 22, 110-115 (2012).

DOI: 10.1016/j.intermet.2011.10.008

Google Scholar

[5] Y. Zhang, X. Lin, L. Wang, L. Wei, F. Liu, W. Huang, Microstructural analysis of Zr55Cu30Al10Ni5 bulk metallic glasses by laser surface remelting and laser solid forming,, Intermetallics 66, 22-30 (2015).

DOI: 10.1016/j.intermet.2015.06.007

Google Scholar

[6] S. Pauly, L. Lober, R. Petters, M. Stoica, S. Scudino, U. Kuhn, J. Eckert, Processing metallic glasses by selective laser melting,, Materials Today 16, 37-41 (2013).

DOI: 10.1016/j.mattod.2013.01.018

Google Scholar

[7] X.P. Li, M.P. Roberts, S. O'Keeffe, T.B. Sercombe, Selective laser melting of Zr-based bulk metallic glasses: Processing, microstructure and mechanical properties,, Materials Design 112, 217-226 (2016).

DOI: 10.1016/j.matdes.2016.09.071

Google Scholar

[8] S. Pauly, C. Schricker, S. Scudino, L. Deng, U. Kühn, Processing a glass-forming Zr-based alloy by selective laser melting,, Materials Design 135, 133-141 (2017).

DOI: 10.1016/j.matdes.2017.08.070

Google Scholar

[9] P. Bordeenithikasem, M. Stolpe, A. Elsen, D.C. Hofmann, Glass forming ability, flexural strength, and wear properties of additively manufactured Zr-based bulk metallic glasses produced through laser powder bed fusion,, Additive Manufacturing 21, 312-317 (2018).

DOI: 10.1016/j.addma.2018.03.023

Google Scholar

[10] D. Ouyang, W. Xing, N. Li, Y. Li, L. Liu, Structural evolutions in 3D-printed Fe-based metallic glass fabricated by selective laser melting,, Additive Manufacturing 23, 246-252 (2018).

DOI: 10.1016/j.addma.2018.08.020

Google Scholar

[11] L. Deng, A. Gebert, L. Zhang, H.Y. Chen, D.D. Gu, U. Kühn, M. Zimmermann, K. Kosiba, S. Pauly, Mechanical performance and corrosion behaviour of Zr-based bulk metallic glass produced by selective laser melting,, Materials Design 189, 108532 (2020).

DOI: 10.1016/j.matdes.2020.108532

Google Scholar

[12] Makarov A.S., Khonik V.A., Kobelev N.P., Mitrofanov Yu.P., Mitrofanova G.V. Thermal effects developing during heating of bulk metallic glass Zr46Cu46Al8. Physics of the Solid State 56, 1249-1253 (2014).

DOI: 10.1134/s1063783414070245

Google Scholar