[1]
Gauntt R., et al., Sandia National Laboratory Report. SAND2012-6173 (2012).
Google Scholar
[2]
T. Cheng, J.R. Keiser, M.P. Brady, K.A. Terrani, B.A. Pint, Oxidation of fuel cladding candidate materials in steam environments at high temperature and pressure, J. Nucl. Mater. 427 (2012) 396-400.
DOI: 10.1016/j.jnucmat.2012.05.007
Google Scholar
[3]
J.C. Brachet, E. Rouesne, J.T. Ribis, S. Guilbert, G. Urvoy, High temperature steam oxidation of chromium-coated zirconium - based alloys: Kinetics and process, Corros. Sci. 67 (2020), 108537.
DOI: 10.1016/j.corsci.2020.108537
Google Scholar
[4]
H. Chen, X. Wang, R. Zhang, Application and development progress of Cr-based surface coatings in nuclear fuel element: I. Selection, preparation, and characteristics of coating materials, Coatings 10 (2020) 808.
DOI: 10.3390/coatings10090808
Google Scholar
[5]
H. Chen, X. Wang, R. Zhang, Application and development progress of Cr-based surface coating in nuclear fuel elements: II. Current status and shortcomings of performance studies, Coatings 10 (2020) 835.
DOI: 10.3390/coatings10090835
Google Scholar
[6]
M. Sevecek, A. Gurgen, A. Seshadri, Y. Che, M. Wagih, B. Phillips, V. Champagne, K. Shirvan, Development of Cr cold spray-coated fuel cladding with enhanced accident tolerance, Nucl. Eng. Technol. 50 (2018) 229–236.
DOI: 10.1016/j.net.2017.12.011
Google Scholar
[7]
E.B. Kashkarov, D.V. Sidelev, M. Rombaeva, M.S. Syrtanov, G.A. Bleykher, Chromium coatings deposited by cooled and hot target magnetron sputtering for accident tolerant nuclear fuel claddings, Surf. Coat. Technol. 389 (2020) 125618.
DOI: 10.1016/j.surfcoat.2020.125618
Google Scholar
[8]
H. Yeom, B. Maier, G. Johnson, T. Dabney, M. Lenling, K. Sridharan, High temperature oxidation and microstructural evolution of cold spray chromium coatings on Zircaloy-4 in steam environments, J. Nucl. Mater. 526 (2019) 151737.
DOI: 10.1016/j.jnucmat.2019.151737
Google Scholar
[9]
D.J. Young, High temperature oxidation and corrosion of metals Oxford, UK: Elsevier (2008) 573.
Google Scholar
[10]
J. Skarohlíd, P. Ashcheulov, A. Jäger, J. Racek, A. Taylor, L. Shao, Nanosized polycrystalline diamond cladding for surface protection of zirconium nuclear fuel tubes, J. Mater. Process. Technol. 214 (2014) 2600-2605.
DOI: 10.1016/j.jmatprotec.2014.05.009
Google Scholar
[11]
J.H. Sung, T.H. Kim, S.S. Kim, Fretting damage of TiN coated Zircaloy-4 tube, Wear. 250 (2001) 658-664.
DOI: 10.1016/s0043-1648(01)00674-3
Google Scholar
[12]
D.J. Tallman, B. Anasori, M.W. Barsoum, A critical review of the oxidation of Ti2AlC, Ti3AlC2 and Cr2AlC in air. Mater. Res. Lett. 1 (2013) 115-125.
Google Scholar
[13]
C. Tang, M. Stueber, M. Steinbrueck, M. Grosse, S. Ulrich, H.J. Seifert, Assessment of high-temperature steam oxidation behavior of Zircaloy-4 with Ti2AlC coating deposited by magnetron sputtering, Proceeding of the Nuclear Materials Conference (2016).
DOI: 10.1016/j.corsci.2018.02.035
Google Scholar
[14]
K.A. Terrani, C.M. Parish, D. Shin, B.A. Pint, Protection of zirconium by alumina- and chromia-forming iron alloys under high-temperature steam exposure, J. Nucl. Mater. 438 (2013) 64-71.
DOI: 10.1016/j.jnucmat.2013.03.006
Google Scholar
[15]
K.A. Terrani, B.A. Pint, C.M. Parish, C.M. Silva, L.L. Snead, Y. Katoh, Silicon carbide oxidation in steam up to 2 MPa, J. Am. Ceram. Soc. 97 (2014) 2331-2352.
DOI: 10.1111/jace.13094
Google Scholar
[16]
C. Tang, M. Stueber, H.J. Seifert, M. Steinbrueck, Protective coatings on zirconium-based alloys as accident-tolerant fuel (ATF) claddings, Corros. Rev. 35 (2017) 141–165.
DOI: 10.1515/corrrev-2017-0010
Google Scholar
[17]
J. Krejcí, J. Kabátová, F. Manoch, J. Koˇcí, L. Cvrˇcek, J. Málek, Development and testing of multicomponent fuel cladding with enhanced accidental performance, Nucl. Eng. Technol. 52 (2020) 597-609.
DOI: 10.1016/j.net.2019.08.015
Google Scholar
[18]
A.S. Kuprin, V.A. Belous, V.N. Voyevodin, V.V. Bryk, R.L. Vasilenko, V.D. Ovcharenko, E.N. Reshetnyak, G.N. Tolmachova, P.N. V'yugov, Vacuum-arc chromium-based coatings for protection of zirconium alloys from the high-temperature oxidation in air, J. Nucl. Mater. 465 (2015) 400-406.
DOI: 10.1016/j.jnucmat.2015.06.016
Google Scholar
[19]
B.A. Pint, K.A. Terrani, M.P. Brady, T. Cheng, J.R. Keiser, High temperature oxidation of fuel cladding candidate materials in steam-hydrogen environments, J. Nucl. Mater. 440 (2013) 420-427.
DOI: 10.1016/j.jnucmat.2013.05.047
Google Scholar
[20]
W.G. Cook, R.P. Olive, Pourbaix diagrams for chromium, aluminum and titanium extended to high-subcritical and low-supercritical conditions, Corros. Sci. 58 (2012) 291-298.
DOI: 10.1016/j.corsci.2012.02.002
Google Scholar
[21]
J. Musil, J. Sklenka, R. Čerstvý, Protection of brittle film against cracking, Appl. Surf. Sci. 370 (2016) 306-311.
DOI: 10.1016/j.apsusc.2016.02.132
Google Scholar
[22]
D.V. Sidelev, E.B. Kashkarov, M.S. Syrtanov, V.P. Krivobokov, Nickel-chromium (Ni–Cr) coatings deposited by magnetron sputtering for accident tolerant nuclear fuel claddings, Surf. Coat. Technol. 369 (2019) 69-78.
DOI: 10.1016/j.surfcoat.2019.04.057
Google Scholar
[23]
D. Kaddour, S. Frechinet, A.F. Gourgues, J.C. Brachet, L. Portier, A. Pineau, Experimental determination of creep properties of Zirconium alloys together with phase transformation, Scr. Mater. 51 (2004) 515-519.
DOI: 10.1016/j.scriptamat.2004.05.046
Google Scholar
[24]
R.A. Perez, H. Nakajima, F. Dyment, Diffusion in -Ti and Zr, Mater. Trans. 44 (2003) 2-13.
Google Scholar
[25]
D.V. Sidelev, M.S. Syrtanov, S.E. Ruchkin, A.V. Pirozhkov, E.B. Kashkarov, Protection of Zr alloy under high-temperature air oxidation: a multilayer coating approach, Coatings. 11 (2021) 227.
DOI: 10.3390/coatings11020227
Google Scholar