[1]
L.L. Wang, F.H. Zhang, Y.J. Liu, S.Y. Du, and J.S. Leng. Photosensitive Composite Inks for Digital Light Processing Four-Dimensional Printing of Shape Memory Capture Devices, ACS Appl. Mater. Interfaces. 13 (2021) 18110-18119.
DOI: 10.1021/acsami.1c02624
Google Scholar
[2]
H. Gong, Y. Gao, S. Jiang, and F. Sun. Photocured Materials with Self-Healing Function through Ionic Interactions for Flexible Electronics, ACS Appl. Mater. Interfaces. 10 (2018) 26694-26704.
DOI: 10.1021/acsami.8b08884
Google Scholar
[3]
X. Zou, J. Zhu, Y. Zhu, Y. Yagci, and R. Liu. Photopolymerization of Macroscale Black 3D Objects Using Near-Infrared Photochemistry. ACS Appl. Mater. Interfaces. 12 (2020) 58287-58294.
DOI: 10.1021/acsami.0c18255
Google Scholar
[4]
G. Yilmaz, G. Acik, and Y. Yagci. Counteranion sensitization approach to photoinitiated free radical polymerization. Macromolecules. 45 (2012) 2219-2224.
DOI: 10.1021/ma3000169
Google Scholar
[5]
C. Ibanez, L. Lecamp, F. Boust, P. Lebaudy, and F. Burel. Elaboration of epoxy/silica composites by cationic photopolymerization: Kinetic study, optical and mechanical characterization, J. Photochem. Photobiol. A Chem. 402 (2020) 112798.
DOI: 10.1016/j.jphotochem.2020.112798
Google Scholar
[6]
L. Huang, G. Xie, and J. Yang. A Fluorinated photobase generator with UVA sensitive for surface oxygen inhibition, Prog. Org. Coatings. 143 (2020) 105604.
DOI: 10.1016/j.porgcoat.2020.105604
Google Scholar
[7]
S.C. Ligon, B. Husár, H. Wutzel, R. Holman, and R. Liska. Strategies to reduce oxygen inhibition in photoinduced polymerization, Chem. Rev. 114 (2014) 577-589.
DOI: 10.1021/cr3005197
Google Scholar
[8]
T.Y. Lee, C.A. Guymon, E.S. Jönsson, and C.E. Hoyle. The effect of monomer structure on oxygen inhibition of (meth)acrylates photopolymerization, Polymer (Guildf). 45 (2004) 6155-6162.
DOI: 10.1016/j.polymer.2004.06.060
Google Scholar
[9]
C. Schmitz, T. Poplata, A. Feilen, and B. Strehmel. Radiation crosslinking of pigmented coating material by UV LEDs enabling depth curing and preventing oxygen inhibition, Prog. Org. Coatings. 144 (2020) 105663.
DOI: 10.1016/j.porgcoat.2020.105663
Google Scholar
[10]
J. Kirschner, J.M. Becht, J.E. Klee, and J. Lalevée. A New Phosphine for Efficient Free Radical Polymerization under Air, Macromol. Rapid Commun. 41 (2020) 1-4.
DOI: 10.1002/marc.202000053
Google Scholar
[11]
C. Decker, T. Nguyen Thi Viet, D. Decker, and E. Weber-Koehl. UV-radiation curing of acrylate/epoxide systems. Polymer (Guildf). 42 (2001) 5531-5541.
DOI: 10.1016/s0032-3861(01)00065-9
Google Scholar
[12]
Y. Cai and J.L.P. Jessop. Decreased oxygen inhibition in photopolymerized acrylate/epoxide hybrid polymer coatings as demonstrated by Raman spectroscopy. Polymer (Guildf). 47 (2006) 6560-6566.
DOI: 10.1016/j.polymer.2006.07.031
Google Scholar
[13]
J.D. Cho and J.W. Hong. UV-initiated free radical and cationic photopolymerizations of acrylate/epoxide and acrylate/vinyl ether hybrid systems with and without photosensitizer, J. Appl. Polym. Sci. 93 (2004) 1473-1483.
DOI: 10.1002/app.20597
Google Scholar