Long-Term Durability of Inorganic Matrix Composite (IMC) Systems under Sustained Tensile Loading

Article Preview

Abstract:

Inorganic Matrix Composite (IMC) systems have been extensively studied in recent years as an effective alternative to the most known organic Fiber Reinforced Polymer (FRP) systems, especially for strengthening applications on masonry. Despite intensive research has been conducted to study mechanical properties and bond mechanisms of such systems, also under different environmental conditions, little information is available on their long-term behaviour under sustained load. In the framework of a large assessment plan for the analysis of fabric reinforced inorganic matrix composites, long-term tensile tests have been performed on different systems in a newly developed test setup. The paper will aim at describing the proposed setup and instrumentation, as well as the results in terms of measured displacements for different combination of fabrics and matrices. Results in terms of retained tensile strength will also be presented, showing the little influence of the long-term loading on the performance of the studied composite systems.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

19-26

Citation:

Online since:

April 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Bonati, A., A. Franco, O. Coppola and G. De Luca, Strengthening of masonry structures: Current national and international approaches for qualification and design. KEM, 2019. 817 KEM: 501-506.

DOI: 10.4028/www.scientific.net/kem.817.501

Google Scholar

[2] De Lorenzis, L., B. Miller, and A. Nanni, Bond of FRP laminates to concrete. ACI Mat. J., 2001. 98(3): 256-264.

Google Scholar

[3] Yao, J., J.G. Teng, and J.F. Chen, Experimental study on FRP-to-concrete bonded joints. Compos. B. Eng., 2005. 36(2): 99-113.

DOI: 10.1016/j.compositesb.2004.06.001

Google Scholar

[4] Chen, J.F. and J.G. Teng, Anchorage strength models for FRP and steel plates bonded to concrete. J. Struct. Eng., 2001. 127(7): 784-791.

DOI: 10.1061/(asce)0733-9445(2001)127:7(784)

Google Scholar

[5] Sayed-Ahmed, E.Y., R. Bakay, and N.G. Shrive, Bond Strength of FRP Laminates to Concrete: State-of-the-Art Review. Electron. J. Struct. Eng., 2009. 9: 45-61.

DOI: 10.56748/ejse.9117

Google Scholar

[6] Franco, A. and G. Royer-Carfagni, Effective bond length of FRP stiffeners. Int. J. Non Linear Mech., 2014. 60: 46-57.

DOI: 10.1016/j.ijnonlinmec.2013.12.003

Google Scholar

[7] Ceroni, F., Pecce, M. Evaluation of Bond Strength in Concrete Elements Externally Reinforced with CFRP Sheets and Anchoring Devices. J. Compos. Constr., 2010. 14(5): 521-530.

DOI: 10.1061/(asce)cc.1943-5614.0000118

Google Scholar

[8] Ceroni, F., Bond tests to evaluate the effectiveness of anchoring devices for CFRP sheets epoxy bonded over masonry elements. Compos. B. Eng., 2017. 113: 317-330.

DOI: 10.1016/j.compositesb.2017.01.042

Google Scholar

[9] Arboleda, D., et al., Testing Procedures for the Uniaxial Tensile Characterization of Fabric-Reinforced Cementitious Matrix Composites. J. Compos. Constr, 2016. 20(3).

DOI: 10.1061/(asce)cc.1943-5614.0000626

Google Scholar

[10] De Santis, S. and G. de Felice, Tensile behaviour of mortar-based composites for externally bonded reinforcement systems. Compos. B. Eng., 2015. 68: 401-413.

DOI: 10.1016/j.compositesb.2014.09.011

Google Scholar

[11] Donnini, J. and V. Corinaldesi, Mechanical characterization of different FRCM systems for structural reinforcement. Constr. Build. Mater., 2017. 145: 565-575.

DOI: 10.1016/j.conbuildmat.2017.04.051

Google Scholar

[12] Täljsten, B. and T. Blanksvärd, Strengthening of concrete structures with cement based bonded composites. NCF, 2008. 2(38): 133-153.

Google Scholar

[13] Triantafillou, T.C. and C.G. Papanicolaou, Shear strengthening of reinforced concrete members with textile reinforced mortar (TRM) jackets. Mater. Struct., 2006. 39(1): 93-103.

DOI: 10.1007/s11527-005-9034-3

Google Scholar

[14] Basalo, F., F. Matta, and A. Nanni, Fiber reinforced cementitious matrix composites for infrastructure rehabilitation. Composites & Polycon 2009, (2009).

Google Scholar

[15] Babaeidarabad, S., G. Loreto, and A. Nanni, Flexural strengthening of RC beams with an externally bonded fabric-reinforced cementitious matrix. J. Compos. Constr. , 2014. 18(5):04014009.

DOI: 10.1061/(asce)cc.1943-5614.0000473

Google Scholar

[16] Awani, O., A.E. Refai, and T. El-Maaddawy, Bond characteristics of carbon fabric-reinforced cementitious matrix in double shear tests. Constr. Build. Mater., 2015. 101: 39-49.

DOI: 10.1016/j.conbuildmat.2015.10.017

Google Scholar

[17] Sen, R., Developments in the durability of FRP-concrete bond. Constr. Build. Mater., 2015. 78: 112-125.

Google Scholar

[18] Myers, J.J., 12 - Durability of external fiber-reinforced polymer strengthening systems, in Durability of Composites for Civil Structural Applications, V.M. Karbhari, Editor. 2007, Woodhead Publishing. 247-283.

DOI: 10.1533/9781845693565.2.247

Google Scholar

[19] Ombres, L., Analysis of the bond between Fabric Reinforced Cementitious Mortar (FRCM) strengthening systems and concrete. Compos. B. Eng., 2015. 69: 418-426.

DOI: 10.1016/j.compositesb.2014.10.027

Google Scholar

[20] Arboleda, D., et al. Durability of fabric reinforced cementitious matrix (FRCM) composites. in Proceedings 7th Int. Conf. on FRP Comp. in Civil Eng., CICE. (2014).

Google Scholar

[21] Ceroni, F., et al., Effects of Environmental Conditioning on the Bond Behavior of FRP and FRCM Systems Applied to Concrete Elements. J. Eng. Mech., 2018. 144(1): 04017144.

DOI: 10.1061/(asce)em.1943-7889.0001375

Google Scholar

[22] Nobili, A. and C. Signorini, On the effect of curing time and environmental exposure on impregnated Carbon Fabric Reinforced Cementitious Matrix (CFRCM) composite with design considerations. Compos. B. Eng., 2017. 112: 300-313.

DOI: 10.1016/j.compositesb.2016.12.022

Google Scholar

[23] Jeong, Y., J. Lee, and W. Kim, Modeling and Measurement of Sustained Loading and Temperature-Dependent Deformation of Carbon Fiber-Reinforced Polymer Bonded to Concrete. Materials, 2015. 8(2): 435-450.

DOI: 10.3390/ma8020435

Google Scholar

[24] Choi, K.K., P. Meshgin, and M.M.R. Taha, Shear creep of epoxy at the concrete-FRP interfaces. Compos. B. Eng., 2007. 38(5-6): 772-780.

DOI: 10.1016/j.compositesb.2006.10.003

Google Scholar

[25] Soliman, E., U.F. Kandil, and M.R. Taha, Limiting shear creep of epoxy adhesive at the FRP-concrete interface using multi-walled carbon nanotubes. Int. J. Adhes. Adhes., 2012. 33: 36-44.

DOI: 10.1016/j.ijadhadh.2011.09.006

Google Scholar

[26] Houhou, N., et al. Durability of concrete/FRP bonded assemblies subjected to hydrothermal coupled creep ageing mechanisms: experimental and numerical investigations. in Transport Research Arena 2014. 2014. Paris.

Google Scholar

[27] Meshgin, P., K.K. Choi, and M.M.R. Taha, Experimental and analytical investigations of creep of epoxy adhesive at the concrete-FRP interfaces. Int. J. Adhes. Adhes., 2009. 29(1): 56-66.

DOI: 10.1016/j.ijadhadh.2008.01.003

Google Scholar

[28] Mazzotti, C. and M. Savoia, Stress Redistribution Along the Interface Between Concrete and FRP Subject to Long-term Loading. Adv. Struct. Eng., 2009. 12(5): 651-661.

DOI: 10.1260/136943309789867926

Google Scholar

[29] Bonati, A., A. Franco, L. Schiavi, and A. Occhiuzzi. Experimental investigation of the long-term behaviour of Fabric Reinforced Matrix systems, in Brick and Block Masonry - From Historical to Sustainable Masonry, J. Kubica, A. Kwiecień, and Ł. Bednarz, Editors. 2020, CRC Press: London.

DOI: 10.1201/9781003098508-49

Google Scholar

[30] Bonati, A., A. Franco, and A. Occhiuzzi. Long-term behaviour of Steel Reinforced Polymer (SRP) systems bonded to concrete substrates. in Italian Concrete Days 2020. 2021. Napoli.

Google Scholar