Durability of Stainless-Steel Reinforced Grout against Salt Attack

Article Preview

Abstract:

Steel reinforced grout is one of the most effective mortar-based composites for the strengthening of masonry structures. Nonetheless, the deterioration of steel cords, especially when embedded in lime-based matrices, may compromise the long-term effectiveness of the strengthening systems. The use of stainless-steel may overcome this drawback, but it has received limited attention so far, since its higher cost makes it less competitive in the market. This work presents a laboratory investigation on the durability of stainless-steel reinforced grout against salt attack, which is the most severe aging condition. Tensile tests were carried out on bare textiles and composite specimens before and after aging in substitute ocean water for up to 5000 hours. Bent textiles, which are required by a number of structural applications, were aged and tested as well. Test outcomes indicate that this technology may be successfully used for the life-span strengthening of the built heritage.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

43-49

Citation:

Online since:

April 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. de Felice, T. D'Antino, S. De Santis, P. Meriggi, F. Roscini, Lessons Learned on the Tensile and Bond Behavior of Fabric Reinforced Cementitious Matrix (FRCM) Composites, Front. Built Environ. 6 (2020). https://doi.org/10.3389/fbuil.2020.00005.

DOI: 10.3389/fbuil.2020.00005

Google Scholar

[2] B. Barton, E. Wobbe, L.R. Dharani, P. Silva, V. Birman, A. Nanni, T. Alkhrdaji, J. Thomas, G. Tunis, Characterization of reinforced concrete beams strengthened by steel reinforced polymer and grout (SRP and SRG) composites, Mater. Sci. Eng. A. 412 (2005) 129–136. https://doi.org/10.1016/j.msea.2005.08.151.

DOI: 10.1016/j.msea.2005.08.151

Google Scholar

[3] A. Razavizadeh, B. Ghiassi, D. V. Oliveira, Bond behavior of SRG-strengthened masonry units: Testing and numerical modeling, Constr. Build. Mater. 64 (2014) 387–397. https://doi.org/10.1016/j.conbuildmat.2014.04.070.

DOI: 10.1016/j.conbuildmat.2014.04.070

Google Scholar

[4] S. De Santis, F. Ceroni, G. de Felice, M. Fagone, B. Ghiassi, A. Kwiecień, G.P. Lignola, M. Morganti, M. Santandrea, M.R. Valluzzi, A. Viskovic, Round Robin Test on tensile and bond behaviour of Steel Reinforced Grout systems, Compos. Part B Eng. 127 (2017) 100–120. https://doi.org/10.1016/j.compositesb.2017.03.052.

DOI: 10.1016/j.compositesb.2017.03.052

Google Scholar

[5] S. De Santis, Bond behaviour of Steel Reinforced Grout for the extrados strengthening of masonry vaults, Constr. Build. Mater. 150 (2017) 367–382. https://doi.org/10.1016/j.conbuildmat. 2017.06.010.

DOI: 10.1016/j.conbuildmat.2017.06.010

Google Scholar

[6] A. Dalalbashi, S. De Santis, B. Ghiassi, D. V. Oliveira, Slip rate effects and cyclic behaviour of textile-to-matrix bond in textile reinforced mortar composites, Mater. Struct. 54 (2021) 108. https://doi.org/10.1617/s11527-021-01706-w.

DOI: 10.1617/s11527-021-01706-w

Google Scholar

[7] G.E. Thermou, S. De Santis, G. de Felice, S. Alotaibi, F. Roscini, I. Hajirasouliha, M. Guadagnini, Bond behaviour of multi-ply steel reinforced grout composites, Constr. Build. Mater. 305 (2021) 124750. https://doi.org/10.1016/j.conbuildmat.2021.124750.

DOI: 10.1016/j.conbuildmat.2021.124750

Google Scholar

[8] ICC Evaluation Service. Acceptance Criteria for Masonry and Concrete Strengthening Using Fabric-reinforced Cementitious Matrix (FRCM) and Steel Reinforced Grout (SRG) Composite [1] Systems-AC434. ICC Evaluation Service; (2016).

DOI: 10.14359/51702356

Google Scholar

[9] EOTA (European Organisation for Technical Assessment). Externally-Bonded Composite Systems With Inorganic Matrix for Strengthening of Concrete and Masonry Structures. EAD 340275-00-0104, (2020).

Google Scholar

[10] CSLLPP (Italian High Council of Public Works). Guidelines for the identification, the qualification and the acceptance of fibre-reinforced inorganic matrix composites (FRCM) for the structural consolidation of existing constructions (in Italian). (2018).

Google Scholar

[11] A. Borri, G. Castori, M. Corradi, E. Speranzini, Durability Analysis for FRP and SRG Composites in Civil Applications, Key Eng. Mater. 624 (2014) 421–428. https://doi.org/10.4028/www.scientific.net/KEM.624.421.

DOI: 10.4028/www.scientific.net/kem.624.421

Google Scholar

[12] E. Franzoni, C. Gentilini, M. Santandrea, S. Zanotto, C. Carloni, Durability of steel FRCM-masonry joints: effect of water and salt crystallization, Mater. Struct. 50 (2017) 201. https://doi.org/10.1617/s11527-017-1070-2.

DOI: 10.1617/s11527-017-1070-2

Google Scholar

[13] A. Borri, G. Castori, Indagini sperimentali sulla durabilità di materiali compositi in fibra d'acciaio, in: Proc. 14th Conf. ANIDIS, Bari, (2011).

Google Scholar

[14] S. De Santis, T. Stryszewska, S. Bandini, G. de Felice, Ł. Hojdys, P. Krajewski, A. Kwiecień, F. Roscini, B. Zając, Durability of steel reinforced polyurethane-to-substrate bond, Compos. Part B Eng. 153 (2018) 194–204. https://doi.org/10.1016/j.compositesb.2018.07.043.

DOI: 10.1016/j.compositesb.2018.07.043

Google Scholar

[15] S. De Santis, P. Meriggi, G. de Felice, Durability of steel reinforced grout composites, 17th IB2MAC International Brick&Block Mason. - From Hist. to Sustain. Mason., (2020) 357–363. https://doi.org/10.1201/9781003098508-48.

DOI: 10.1201/9781003098508-48

Google Scholar

[16] L.H. Sneed, C. Carloni, G. Baietti, G. Fraioli, Confinement of Clay Masonry Columns with SRG, Key Eng. Mater. 747 (2017) 350–357. https://doi.org/10.4028/www.scientific.net/KEM.747.350.

DOI: 10.4028/www.scientific.net/kem.747.350

Google Scholar

[17] S. De Santis, F. Roscini, G. de Felice, Full-scale tests on masonry vaults strengthened with Steel Reinforced Grout, Compos. Part B Eng. 141 (2018) 20–36. https://doi.org/10.1016/j.compositesb.2017.12.023.

DOI: 10.1016/j.compositesb.2017.12.023

Google Scholar

[18] S. De Santis, G. De Canio, G. de Felice, P. Meriggi, I. Roselli, Out-of-plane seismic retrofitting of masonry walls with Textile Reinforced Mortar composites, Bull. Earthq. Eng. 17 (2019) 6265–6300. https://doi.org/10.1007/s10518-019-00701-5.

DOI: 10.1007/s10518-019-00701-5

Google Scholar

[19] ASTM International. Standard specification for chromium and chromium nickel stainless steel plate, sheet, and strip for pressure vessels and for general applications. In ASTM International, West Conshohocken, PA. (2016).

DOI: 10.1520/a0240_a0240m-11b

Google Scholar

[20] CEN, European Committee for Standardization. EN 998-2. Specification for mortar for masonry - Part 2: Masonry mortar. (2016).

Google Scholar

[21] CEN, European Committee for Standardization. EN 1015-11. Methods of test for mortar for masonry - Part 11: Determination of flexural and compressive strength of hardened mortar. (2019).

DOI: 10.3403/01905442

Google Scholar

[22] ASTM D1141. Standard Practice for the Preparation of Substitute Ocean Water. ASTM International, West Conshohocken, PA. (2013).

Google Scholar

[23] S. De Santis, H.A. Hadad, F. De Caso y Basalo, G. de Felice, A. Nanni, Acceptance Criteria for Tensile Characterization of Fabric-Reinforced Cementitious Matrix Systems for Concrete and Masonry Repair, J. Compos. Constr. 22 (2018) 04018048. https://doi.org/10.1061/(asce)cc.1943-5614.0000886.

DOI: 10.1061/(asce)cc.1943-5614.0000886

Google Scholar