[1]
G. de Felice, T. D'Antino, S. De Santis, P. Meriggi, F. Roscini, Lessons Learned on the Tensile and Bond Behavior of Fabric Reinforced Cementitious Matrix (FRCM) Composites, Front. Built Environ. 6 (2020). https://doi.org/10.3389/fbuil.2020.00005.
DOI: 10.3389/fbuil.2020.00005
Google Scholar
[2]
B. Barton, E. Wobbe, L.R. Dharani, P. Silva, V. Birman, A. Nanni, T. Alkhrdaji, J. Thomas, G. Tunis, Characterization of reinforced concrete beams strengthened by steel reinforced polymer and grout (SRP and SRG) composites, Mater. Sci. Eng. A. 412 (2005) 129–136. https://doi.org/10.1016/j.msea.2005.08.151.
DOI: 10.1016/j.msea.2005.08.151
Google Scholar
[3]
A. Razavizadeh, B. Ghiassi, D. V. Oliveira, Bond behavior of SRG-strengthened masonry units: Testing and numerical modeling, Constr. Build. Mater. 64 (2014) 387–397. https://doi.org/10.1016/j.conbuildmat.2014.04.070.
DOI: 10.1016/j.conbuildmat.2014.04.070
Google Scholar
[4]
S. De Santis, F. Ceroni, G. de Felice, M. Fagone, B. Ghiassi, A. Kwiecień, G.P. Lignola, M. Morganti, M. Santandrea, M.R. Valluzzi, A. Viskovic, Round Robin Test on tensile and bond behaviour of Steel Reinforced Grout systems, Compos. Part B Eng. 127 (2017) 100–120. https://doi.org/10.1016/j.compositesb.2017.03.052.
DOI: 10.1016/j.compositesb.2017.03.052
Google Scholar
[5]
S. De Santis, Bond behaviour of Steel Reinforced Grout for the extrados strengthening of masonry vaults, Constr. Build. Mater. 150 (2017) 367–382. https://doi.org/10.1016/j.conbuildmat. 2017.06.010.
DOI: 10.1016/j.conbuildmat.2017.06.010
Google Scholar
[6]
A. Dalalbashi, S. De Santis, B. Ghiassi, D. V. Oliveira, Slip rate effects and cyclic behaviour of textile-to-matrix bond in textile reinforced mortar composites, Mater. Struct. 54 (2021) 108. https://doi.org/10.1617/s11527-021-01706-w.
DOI: 10.1617/s11527-021-01706-w
Google Scholar
[7]
G.E. Thermou, S. De Santis, G. de Felice, S. Alotaibi, F. Roscini, I. Hajirasouliha, M. Guadagnini, Bond behaviour of multi-ply steel reinforced grout composites, Constr. Build. Mater. 305 (2021) 124750. https://doi.org/10.1016/j.conbuildmat.2021.124750.
DOI: 10.1016/j.conbuildmat.2021.124750
Google Scholar
[8]
ICC Evaluation Service. Acceptance Criteria for Masonry and Concrete Strengthening Using Fabric-reinforced Cementitious Matrix (FRCM) and Steel Reinforced Grout (SRG) Composite [1] Systems-AC434. ICC Evaluation Service; (2016).
DOI: 10.14359/51702356
Google Scholar
[9]
EOTA (European Organisation for Technical Assessment). Externally-Bonded Composite Systems With Inorganic Matrix for Strengthening of Concrete and Masonry Structures. EAD 340275-00-0104, (2020).
Google Scholar
[10]
CSLLPP (Italian High Council of Public Works). Guidelines for the identification, the qualification and the acceptance of fibre-reinforced inorganic matrix composites (FRCM) for the structural consolidation of existing constructions (in Italian). (2018).
Google Scholar
[11]
A. Borri, G. Castori, M. Corradi, E. Speranzini, Durability Analysis for FRP and SRG Composites in Civil Applications, Key Eng. Mater. 624 (2014) 421–428. https://doi.org/10.4028/www.scientific.net/KEM.624.421.
DOI: 10.4028/www.scientific.net/kem.624.421
Google Scholar
[12]
E. Franzoni, C. Gentilini, M. Santandrea, S. Zanotto, C. Carloni, Durability of steel FRCM-masonry joints: effect of water and salt crystallization, Mater. Struct. 50 (2017) 201. https://doi.org/10.1617/s11527-017-1070-2.
DOI: 10.1617/s11527-017-1070-2
Google Scholar
[13]
A. Borri, G. Castori, Indagini sperimentali sulla durabilità di materiali compositi in fibra d'acciaio, in: Proc. 14th Conf. ANIDIS, Bari, (2011).
Google Scholar
[14]
S. De Santis, T. Stryszewska, S. Bandini, G. de Felice, Ł. Hojdys, P. Krajewski, A. Kwiecień, F. Roscini, B. Zając, Durability of steel reinforced polyurethane-to-substrate bond, Compos. Part B Eng. 153 (2018) 194–204. https://doi.org/10.1016/j.compositesb.2018.07.043.
DOI: 10.1016/j.compositesb.2018.07.043
Google Scholar
[15]
S. De Santis, P. Meriggi, G. de Felice, Durability of steel reinforced grout composites, 17th IB2MAC International Brick&Block Mason. - From Hist. to Sustain. Mason., (2020) 357–363. https://doi.org/10.1201/9781003098508-48.
DOI: 10.1201/9781003098508-48
Google Scholar
[16]
L.H. Sneed, C. Carloni, G. Baietti, G. Fraioli, Confinement of Clay Masonry Columns with SRG, Key Eng. Mater. 747 (2017) 350–357. https://doi.org/10.4028/www.scientific.net/KEM.747.350.
DOI: 10.4028/www.scientific.net/kem.747.350
Google Scholar
[17]
S. De Santis, F. Roscini, G. de Felice, Full-scale tests on masonry vaults strengthened with Steel Reinforced Grout, Compos. Part B Eng. 141 (2018) 20–36. https://doi.org/10.1016/j.compositesb.2017.12.023.
DOI: 10.1016/j.compositesb.2017.12.023
Google Scholar
[18]
S. De Santis, G. De Canio, G. de Felice, P. Meriggi, I. Roselli, Out-of-plane seismic retrofitting of masonry walls with Textile Reinforced Mortar composites, Bull. Earthq. Eng. 17 (2019) 6265–6300. https://doi.org/10.1007/s10518-019-00701-5.
DOI: 10.1007/s10518-019-00701-5
Google Scholar
[19]
ASTM International. Standard specification for chromium and chromium nickel stainless steel plate, sheet, and strip for pressure vessels and for general applications. In ASTM International, West Conshohocken, PA. (2016).
DOI: 10.1520/a0240_a0240m-11b
Google Scholar
[20]
CEN, European Committee for Standardization. EN 998-2. Specification for mortar for masonry - Part 2: Masonry mortar. (2016).
Google Scholar
[21]
CEN, European Committee for Standardization. EN 1015-11. Methods of test for mortar for masonry - Part 11: Determination of flexural and compressive strength of hardened mortar. (2019).
DOI: 10.3403/01905442
Google Scholar
[22]
ASTM D1141. Standard Practice for the Preparation of Substitute Ocean Water. ASTM International, West Conshohocken, PA. (2013).
Google Scholar
[23]
S. De Santis, H.A. Hadad, F. De Caso y Basalo, G. de Felice, A. Nanni, Acceptance Criteria for Tensile Characterization of Fabric-Reinforced Cementitious Matrix Systems for Concrete and Masonry Repair, J. Compos. Constr. 22 (2018) 04018048. https://doi.org/10.1061/(asce)cc.1943-5614.0000886.
DOI: 10.1061/(asce)cc.1943-5614.0000886
Google Scholar