Experimental Investigation on Strengthening of Soft Clay Brick Masonry Columns under Compression with Fiber-Reinforced Inorganic and Organic Matrixes

Article Preview

Abstract:

Masonry made with soft clay brick is commonly used in gravity load bearing of construction in India. The masonry piers and walls typically fail by vertical splitting. The purpose of this study is to improve the strength of masonry columns under compression using wrapping for additional confinement. The compressive load carrying performance and capacity of masonry columns wrapped with fiber reinforced composites in organic and inorganic matrixes are compared. For the purpose of overall improvements in cost and durability, glass and basalt fiber reinforcement is used. 30-40% improvement in the compressive performance of masonry prisms was achieved for both Organic and Inorganic matrixes. However, the specimens with inorganic matrixes were found to exhibit higher ductility compared to organic matrixes. Glass fibers were found to be more effective in wrapping masonry specimens compared to Basalt fiber specimens owing to its higher fiber count per unit length. Analytical models for predicting the compressive capacity of masonry columns with wrapping are verified against the experimental results.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

267-274

Citation:

Online since:

April 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Sarangapani, B. V. Venkatarama Reddy, and K. S. Jagadish, Brick-mortar bond and masonry compressive strength,, J. Mater. Civ. Eng., vol. 17, no. 2, p.229–237, (2005).

DOI: 10.1061/(asce)0899-1561(2005)17:2(229)

Google Scholar

[2] M. B. Ravula and K. V. L. Subramaniam, Experimental investigation of compressive failure in masonry brick assemblages made with soft brick,, Mater. Struct. Constr., vol. 50, no. 1, p.1–11, 2017,.

DOI: 10.1617/s11527-016-0926-1

Google Scholar

[3] G. Pruthvi Raj, M. B. Ravula, and K. V. L. Subramaniam, Failure in clay brick masonry with soft brick under compression: Experimental investigation and numerical simulation,, Key Eng. Mater., vol. 747 KEM, no. July, p.472–479, 2017,.

DOI: 10.4028/www.scientific.net/kem.747.472

Google Scholar

[4] S. A. Hamoush, M. W. McGinley, P. Mlakar, D. Scott, and K. Murray, Out-of-Plane Strengthening of Masonry walls with Reinforced Composites,, J. Compos. Constr., vol. 5, no. 3, p.139–145, (2001).

DOI: 10.1061/(asce)1090-0268(2001)5:3(139)

Google Scholar

[5] M. L. Albert, A. E. Elwi, and J. J. Roger Cheng, Strengthening of Unreinfired Masonry walls with FRPs,, J. Compos. Constr., vol. 5, no. 2, p.76–84, (2001).

DOI: 10.1061/(asce)1090-0268(2001)5:2(76)

Google Scholar

[6] E. Hamed and O. Rabinovitch, Lateral out-of-plane strengthening of masonry walls with composite materials,, J. Compos. Constr., vol. 14, no. 4, p.376–387, 2010,.

DOI: 10.1061/(asce)cc.1943-5614.0000093

Google Scholar

[7] T. D. Krevaikas and T. C. Triantafillou, Masonry confinement with fiber-reinforced polymers,, J. Compos. Constr., vol. 9, no. 2, p.128–135, 2005,.

DOI: 10.1061/(asce)1090-0268(2005)9:2(128)

Google Scholar

[8] C. Faella, E. Martinelli, G. Camorani, M. A. Aiello, F. Micelli, and E. Nigro, Masonry columns confined by composite materials: Design formulae,, Compos. Part B Eng., vol. 42, no. 4, p.705–716, 2011,.

DOI: 10.1016/j.compositesb.2011.02.024

Google Scholar

[9] C. Faella et al., Masonry columns confined by composite materials: Experimental investigation,, Compos. Part B Eng., vol. 42, no. 4, p.692–704, 2011,.

DOI: 10.1016/j.compositesb.2011.02.001

Google Scholar

[10] G. Campione, L. La Mendola, A. Monaco, A. Valenza, and V. Fiore, Behavior in compression of concrete cylinders externally wrapped with basalt fibers,, Compos. Part B Eng., vol. 69, p.576–586, (2015).

DOI: 10.1016/j.compositesb.2014.10.008

Google Scholar

[11] M. A. Silva and C. C. Rodrigues, Size and Relative Stiffness Effects on Compressive Failure of Concrete Columns Wrapped with Glass FRP,, J. Mater. Civ. Eng., vol. 18, no. 3, p.334–342, 2006,.

DOI: 10.1061/(asce)0899-1561(2006)18:3(334)

Google Scholar

[12] J. Piekarczyk, W. Piekarczyk, and S. Blazewicz, Compression strength of concrete cylinders reinforced with carbon fiber laminate,, Constr. Build. Mater., vol. 25, no. 5, p.2365–2369, 2011,.

DOI: 10.1016/j.conbuildmat.2010.11.035

Google Scholar

[13] A. Cascardi, F. Micelli, and M. A. Aiello, FRCM-confined masonry columns: experimental investigation on the effect of the inorganic matrix properties,, Constr. Build. Mater., vol. 186, no. September, p.811–825, 2018,.

DOI: 10.1016/j.conbuildmat.2018.08.020

Google Scholar

[14] G. P. Lignola et al., Performance assessment of basalt FRCM for retrofit applications on masonry,, Composites Part B: Engineering, vol. 128. p.1–18, 2017,.

DOI: 10.1016/j.compositesb.2017.05.003

Google Scholar

[15] L. Garmendia, P. Larrinaga, R. San-Mateos, and J. T. San-José, Strengthening masonry vaults with organic and inorganic composites: An experimental approach,, Mater. Des., vol. 85, p.102–114, 2015,.

DOI: 10.1016/j.matdes.2015.06.150

Google Scholar

[16] IS 3495:Parts 1-4 Methods of Tests of Burnt Clay building brick. 1992, p.1–7.

Google Scholar

[17] M. B. Ravula and K. V. L. Subramaniam, Cohesive-frictional interface fracture behavior in soft-brick masonry: experimental investigation and theoretical development,, Mater. Struct. Constr., vol. 52, no. 2, p.1–12, 2019,.

DOI: 10.1617/s11527-019-1333-1

Google Scholar