Experimental Investigation on the Mechanical and Bond Properties of GFRP Anchors Adopted in FRCM-Masonry Strengthening

Article Preview

Abstract:

The strengthening and retrofitting of existing masonry built heritage has become an increasingly important issue in the last decades. Among the innovative solutions developed by the construction industry, the application of externally bonded fabric-reinforced cementitious matrix (FRCM) composites attracted a great interest, proving to be an easy, effective, and cost-efficient strengthening/retrofitting technique. FRCM composites were shown to be particularly suitable for applications on masonry due to the good compatibility between the composite inorganic matrix and the masonry substrate, which also promotes their durability.A crucial point for the effectiveness of externally bonded FRCM is the bond within the composite strip and between the composite and substrate. Indeed, composite debonding is the commonly observed failure mode. In order to improve the bond with the substrate, connectors (anchors) can be used to improve the bond capacity of the FRCM composite.In this paper, the mechanical and bond properties of a glass fiber reinforced polymer (GFRP) anchor spike, designed for FRCM strengthening, are investigated. First, tensile tests are performed to determine the elastic modulus and tensile strength of the anchor. Then, the anchor-masonry bond behavior is experimentally investigated using pull-out tests. Three different masonry substrates, namely a solid clay brick masonry, a tuff block masonry, and a stone masonry were adopted in the pull-out tests. The results show the influence of the substrate type on the anchor-masonry bond capacity and failure mode observed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

401-408

Citation:

Online since:

April 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.S. Calabrese, T. D'Antino, C. Poggi, P. Colombi, G. Fava, M.A. Pisani, Application of externally bonded inorganic-matrix composites to existing masonry structures, Research for Development. (2020) 283–292. https://doi.org/10.1007/978-3-030-33687-5_25.

DOI: 10.1007/978-3-030-33687-5_25

Google Scholar

[2] T. D'Antino, A.S. Calabrese, C. Poggi, P. Colombi, G. Fava, M. Bocciarelli, Strengthening of different types of slabs with composite-reinforced mortars (CRM), Research for Development. (2020) 293–303. https://doi.org/10.1007/978-3-030-33687-5_26.

DOI: 10.1007/978-3-030-33687-5_26

Google Scholar

[3] C.G. Papanicolaou, T.C. Triantafillou, M. Papathanasiou, K. Karlos, Textile reinforced mortar (TRM) versus FRP as strengthening material of URM walls: out-of-plane cyclic loading, Mater Struct. 41 (2008) 143–157. https://doi.org/10.1617/s11527-007-9226-0.

DOI: 10.1617/s11527-007-9226-0

Google Scholar

[4] T. D'Antino, F. Focacci, L.H. Sneed, C. Pellegrino, Shear strength model for RC beams with U-wrapped FRCM composites, J. Compos. Constr. 24 (2020). https://doi.org/10.1061/(ASCE)CC.1943-5614.0000986.

DOI: 10.1061/(asce)cc.1943-5614.0000986

Google Scholar

[5] J. Donnini, G. Maracchini, S. Lenci, V. Corinaldesi, E. Quagliarini, TRM reinforced tuff and fired clay brick masonry: Experimental and analytical investigation on their in-plane and out-of-plane behavior, Construction and Building Materials. 272 (2021) 121643. https://doi.org/10.1016/j.conbuildmat.2020.121643.

DOI: 10.1016/j.conbuildmat.2020.121643

Google Scholar

[6] G. de Felice, S. De Santis, L. Garmendia, B. Ghiassi, P. Larrinaga, P.B. Lourenço, D.V. Oliveira, F. Paolacci, C.G. Papanicolaou, Mortar-based systems for externally bonded strengthening of masonry, Mater Struct. 47 (2014) 2021–2037. https://doi.org/10.1617/s11527-014-0360-1.

DOI: 10.1617/s11527-014-0360-1

Google Scholar

[7] G. Crisci, F. Ceroni, G.P. Lignola, Efficiency of FRCM systems for strengthening of masonry walls, AIP Conference Proceedings. 2293 (2020) 240008. https://doi.org/10.1063/5.0026446.

DOI: 10.1063/5.0026446

Google Scholar

[8] F. Ceroni, R. Cuzzilla, M. Pecce, Assessment of performance of steel and GFRP bars as injected anchors in masonry walls, Construction and Building Materials. 123 (2016) 78–98. https://doi.org/10.1016/j.conbuildmat.2016.06.124.

DOI: 10.1016/j.conbuildmat.2016.06.124

Google Scholar

[9] F.G. Carozzi, P. Colombi, G. Fava, C. Poggi, Mechanical and bond properties of FRP anchor spikes in concrete and masonry blocks, Composite Structures. 183 (2018) 185–198. https://doi.org/10.1016/j.compstruct.2017.02.026.

DOI: 10.1016/j.compstruct.2017.02.026

Google Scholar

[10] Z.R. Aljazaeri, M.A. Janke, J.J. Myers, A novel and effective anchorage system for enhancing the flexural capacity of RC beams strengthened with FRCM composites, Composite Structures. 210 (2019) 20–28. https://doi.org/10.1016/j.compstruct.2018.10.110.

DOI: 10.1016/j.compstruct.2018.10.110

Google Scholar

[11] Sika Italia SpA, SikaWrap® Anchor G Technical Sheet. April 2021, (2021).

Google Scholar

[12] Sika Italia SpA, Sikadur®-52 Injection Normal Technical Sheet. March 2020, (2020).

Google Scholar

[13] Fornaci Laterizi Danesi SpA, DM116 Technical Sheet, (2021).

Google Scholar

[14] Consiglio Nazionale delle Ricerche, Istruzioni per la Progettazione, l'Esecuzione ed il Controllo di Strutture di Calcestruzzo Armato con barre di Materiale Composito Fibrorinforzato. CNR-DT 203/2006, CNR, Rome, Italy, (2007).

DOI: 10.1007/88-470-0454-3_12

Google Scholar

[15] CSLLPP - Servizio Tecnico Centrale, Linea Guida per la identificazione, la qualificazione ed il controllo di accettazione dei sistemi a rete preformata in materiali compositi fibrorinforzati a matrice polimerica da utilizzarsi per il consolidamento strutturale di costruzioni esistenti con la tecnica dell'intonaco armato CRM (Composite Reinforced Mortar), Rome, Italy, (2019).

DOI: 10.3221/igf-esis.12.04

Google Scholar

[16] Sika Italia SpA, Sika AnchorFix®-3001 Technical Sheet. January 2021, (2021).

Google Scholar

[17] C. Carloni, F. Focacci, FRP-masonry interfacial debonding: An energy balance approach to determine the influence of the mortar joints, European Journal of Mechanics, A/Solids. 55 (2016) 122–133. https://doi.org/10.1016/j.euromechsol.2015.08.003.

DOI: 10.1016/j.euromechsol.2015.08.003

Google Scholar

[18] V.C. Li, Y. Wang, S. Backer, Effect of inclining angle, bundling and surface treatment on synthetic fibre pull-out from a cement matrix, Composites. 21 (1990) 132–140. https://doi.org/10.1016/0010-4361(90)90005-H.

DOI: 10.1016/0010-4361(90)90005-h

Google Scholar

[19] A.S. Calabrese, T. D'Antino, P. Colombi, C. Poggi, Study of the influence of interface normal stresses on the bond behavior of FRCM composites using direct shear and modified beam tests, Construction and Building Materials. 262 (2020). https://doi.org/10.1016/j.conbuildmat.2020.120029.

DOI: 10.1016/j.conbuildmat.2020.120029

Google Scholar

[20] A.S. Calabrese, T. D'Antino, P. Colombi, Experimental and analytical investigation of PBO FRCM-concrete bond behavior using direct and indirect shear test set-ups, Composite Structures. 267 (2021). https://doi.org/10.1016/j.compstruct.2021.113672.

DOI: 10.1016/j.compstruct.2021.113672

Google Scholar

[21] A.S. Calabrese, T. D'Antino, P. Colombi, C. Poggi, C. Carloni, Influence of the test set-up on the bond behavior of FRCM composites, ACI SP. 345 (2021) 185–195.

Google Scholar