[1]
L. A. S. Kouris and T. C. Triantafillou, State-of-the-art on strengthening of masonry structures with textile reinforced mortar (TRM),, Construction and Building Materials, vol. 188. Elsevier Ltd, p.1221–1233, Nov. 10, 2018,.
DOI: 10.1016/j.conbuildmat.2018.08.039
Google Scholar
[2]
V. Alecci, F. Focacci, L. Rovero, G. Stipo, and M. de Stefano, Extrados strengthening of brick masonry arches with PBO-FRCM composites: Experimental and analytical investigations,, Compos. Struct., vol. 149, p.184–196, Aug. 2016,.
DOI: 10.1016/j.compstruct.2016.04.030
Google Scholar
[3]
V. Alecci et al., Experimental investigation on masonry arches strengthened with PBO-FRCM composite,, Compos. Part B Eng., vol. 100, p.228–239, 2016,.
DOI: 10.1016/j.compositesb.2016.05.063
Google Scholar
[4]
G. Misseri, L. Rovero, G. Stipo, S. Barducci, V. Alecci, and M. De Stefano, Experimental and analytical investigations on sustainable and innovative strengthening systems for masonry arches,, Compos. Struct., vol. 210, 2019,.
DOI: 10.1016/j.compstruct.2018.11.054
Google Scholar
[5]
S. Barducci, V. Alecci, M. De Stefano, G. Misseri, L. Rovero, and G. Stipo, Experimental and Analytical Investigations on Bond Behavior of Basalt-FRCM Systems,, J. Compos. Constr., vol. 24, no. 1, p.04019055, Feb. 2020,.
DOI: 10.1061/(asce)cc.1943-5614.0000985
Google Scholar
[6]
N. Gattesco and I. Boem, Review of experimental tests and numerical study on masonry vaults reinforced through fiber-reinforced mortar coating,, Bull. Earthq. Eng., vol. 17, no. 7, p.4027–4048, Jul. 2019,.
DOI: 10.1007/s10518-019-00619-y
Google Scholar
[7]
I. Boem and N. Gattesco, Cyclic behavior of masonry barrel vaults strengthened through Composite Reinforced Mortar, considering the role of the connection with the abutments,, Eng. Struct., vol. 228, p.111518, Feb. 2021,.
DOI: 10.1016/j.engstruct.2020.111518
Google Scholar
[8]
N. Gattesco, I. Boem, and V. Andretta, Experimental behaviour of non-structural masonry vaults reinforced through fibre-reinforced mortar coating and subjected to cyclic horizontal loads,, Eng. Struct., vol. 172, p.419–431, Oct. 2018,.
DOI: 10.1016/j.engstruct.2018.06.044
Google Scholar
[9]
A. Dalalbashi, B. Ghiassi, D. V. Oliveira, and A. Freitas, Fiber-to-mortar bond behavior in TRM composites: Effect of embedded length and fiber configuration,, Compos. Part B Eng., vol. 152, p.43–57, Nov. 2018,.
DOI: 10.1016/j.compositesb.2018.06.014
Google Scholar
[10]
A. Dalalbashi, B. Ghiassi, D. V. Oliveira, and A. Freitas, Effect of test setup on the fiber-to-mortar pull-out response in TRM composites: Experimental and analytical modeling,, Compos. Part B Eng., vol. 143, p.250–268, Jun. 2018,.
DOI: 10.1016/j.compositesb.2018.02.010
Google Scholar
[11]
P. D. Askouni and C. (Corina) G. Papanicolaou, Textile Reinforced Mortar-to-masonry bond: Experimental investigation of bond-critical parameters,, Constr. Build. Mater., vol. 207, p.535–547, May 2019,.
DOI: 10.1016/j.conbuildmat.2019.02.102
Google Scholar
[12]
T. D'Antino, C. Carloni, L. H. Sneed, and C. Pellegrino, Matrix – fiber bond behavior in PBO FRCM composites : A fracture mechanics approach,, Eng. Fract. Mech., vol. 117, p.94–111, 2014,.
DOI: 10.1016/j.engfracmech.2014.01.011
Google Scholar
[13]
A. S. Calabrese, P. Colombi, and T. D'Antino, Analytical solution of the bond behavior of FRCM composites using a rigid-softening cohesive material law,, Compos. Part B Eng., vol. 174, p.107051, Oct. 2019,.
DOI: 10.1016/j.compositesb.2019.107051
Google Scholar
[14]
G. Misseri, L. Rovero, and S. Galassi, Analytical modelling bond behaviour of polybenzoxazole (PBO) and glass Fibre Reinforced Cementitious Matrix (FRCM) systems coupled with cement and gypsum matrixes: Effect of the Cohesive Material Law (CML) shape,, Compos. Part B Eng., vol. 223, p.109090, Oct. 2021,.
DOI: 10.1016/j.compositesb.2021.109090
Google Scholar
[15]
F. Nerilli, S. Marfia, and E. Sacco, Micromechanical modeling of the constitutive response of FRCM composites,, Constr. Build. Mater., vol. 236, p.117539, Mar. 2020,.
DOI: 10.1016/j.conbuildmat.2019.117539
Google Scholar
[16]
C. Caggegi et al., Experimental analysis on tensile and bond properties of PBO and aramid fabric reinforced cementitious matrix for strengthening masonry structures,, Compos. Part B Eng., vol. 127, p.175–195, Oct. 2017,.
DOI: 10.1016/j.compositesb.2017.05.048
Google Scholar
[17]
F. G. Carozzi et al., Experimental investigation of tensile and bond properties of Carbon-FRCM composites for strengthening masonry elements,, Compos. Part B Eng., vol. 128, p.100–119, Nov. 2017,.
DOI: 10.1016/j.compositesb.2017.06.018
Google Scholar
[18]
S. De Santis et al., Round Robin Test on tensile and bond behaviour of Steel Reinforced Grout systems,, Compos. Part B Eng., vol. 127, p.100–120, Oct. 2017,.
DOI: 10.1016/j.compositesb.2017.03.052
Google Scholar
[19]
M. Malena, M. Sangirardi, and G. de Felice, Steel Reinforced Grout under uniaxial load: Experimental evidences and numerical modelling,, Constr. Build. Mater., vol. 227, p.116808, Dec. 2019,.
DOI: 10.1016/j.conbuildmat.2019.116808
Google Scholar
[20]
P. D. Askouni and C. Corina" G. Papanicolaou, "Role of Mortar Joints in Textile Reinforced Mortar-to-Masonry Bond,, J. Compos. Constr., vol. 24, no. 6, p.04020069, Dec. 2020,.
DOI: 10.1061/(asce)cc.1943-5614.0001056
Google Scholar
[21]
F. Ceroni and P. Salzano, Design provisions for FRCM systems bonded to concrete and masonry elements,, Compos. Part B Eng., vol. 143, p.230–242, Jun. 2018,.
DOI: 10.1016/j.compositesb.2018.01.033
Google Scholar
[22]
American Concrete Institute (ACI), Guide to Design and Construction of Externally Bonded Fabric-Reinforced Cementitious Matrix (FRCM) Systems for Repair and Strengthening Concrete and Masonry Structures Guide to Design and Construction of Externally Bonded FRCM Systems for Repair and Stren. (2013).
DOI: 10.1016/j.prostr.2018.11.027
Google Scholar
[23]
R. T. C. 250_CSM, Recommendation of RILEM Technical Committee 250-CSM: Test method for Textile Reinforced Mortar to substrate bond characterization,, Mater. Struct. Constr., vol. 51, no. 4, p.1–9, Aug. 2018,.
DOI: 10.1617/s11527-018-1216-x
Google Scholar
[24]
D. Arboleda, F. G. Carozzi, A. Nanni, and C. Poggi, Testing Procedures for the Uniaxial Tensile Characterization of Fabric-Reinforced Cementitious Matrix Composites,, J. Compos. Constr., vol. 20, no. 3, p.04015063, Jun. 2016,.
DOI: 10.1061/(asce)cc.1943-5614.0000626
Google Scholar
[25]
F. Focacci, T. D'Antino, and C. Carloni, The role of the fiber–matrix interfacial properties on the tensile behavior of FRCM coupons,, Constr. Build. Mater., vol. 265, p.120263, Dec. 2020,.
DOI: 10.1016/j.conbuildmat.2020.120263
Google Scholar
[26]
S. De Santis et al., Acceptance Criteria for Tensile Characterization of Fabric-Reinforced Cementitious Matrix Systems for Concrete and Masonry Repair,, 2018,.
DOI: 10.1061/(asce)cc.1943-5614.0000886
Google Scholar
[27]
X. Zou, L. H. Sneed, and T. D'Antino, Full-range behavior of fiber reinforced cementitious matrix (FRCM)-concrete joints using a trilinear bond-slip relationship,, Compos. Struct., vol. 239, May 2020,.
DOI: 10.1016/j.compstruct.2020.112024
Google Scholar
[28]
L. Rovero, S. Galassi, and G. Misseri, Experimental and analytical investigation of bond behavior in glass fiber-reinforced composites based on gypsum and cement matrices,, Compos. Part B Eng., vol. 194, p.108051, Aug. 2020,.
DOI: 10.1016/j.compositesb.2020.108051
Google Scholar
[29]
A. D'Ambrisi, L. Feo, and F. Focacci, Bond-slip relations for PBO-FRCM materials externally bonded to concrete,, Compos. Part B Eng., vol. 43, no. 8, p.2938–2949, Dec. 2012,.
DOI: 10.1016/j.compositesb.2012.06.002
Google Scholar
[30]
CEN, EN 1015-11 Methods of test for mortar for masonry - Part 11: Determination of flexural and compressive strength of hardened mortar,, 2019, Accessed: Nov. 12, 2020. [Online]. Available: http://store.uni.com/catalogo/uni-en-1015-11-(2019).
DOI: 10.3403/01905442
Google Scholar
[31]
C. Soranakom and B. Mobasher, Modeling of tension stiffening in reinforced cement composites: Part I. Theoretical modeling,, Mater. Struct. 2010 439, vol. 43, no. 9, p.1217–1230, Apr. 2010,.
DOI: 10.1617/s11527-010-9594-8
Google Scholar
[32]
P. Colombi and T. D'Antino, Analytical assessment of the stress-transfer mechanism in FRCM composites,, Compos. Struct., vol. 220, p.961–970, Jul. 2019,.
DOI: 10.1016/j.compstruct.2019.03.074
Google Scholar
[33]
E. Grande and G. Milani, Numerical simulation of the tensile behavior of FRCM strengthening systems,, Compos. Part B Eng., vol. 189, p.107886, May 2020,.
DOI: 10.1016/j.compositesb.2020.107886
Google Scholar