Finite Difference Model for the Bond Behaviour of Polyparaphenylene Benzobisoxazole (PBO) Fibre-Reinforced Composite System for Retrofitting Masonry

Article Preview

Abstract:

This study addresses a numerical investigation of the bond behaviour exhibited by an FRCM system when subject to tensile and single direct shear tests. A reinforcement system, based on a polyparaphenylene benzobisoxazole (PBO) bi-directional fibre mesh and a mixed cement-pozzolanic mortar is selected. The system is characterized by the presence of coated glass-fibre yarns and dry polypropylene yarns alternated to the PBO yarns in the warp and weft directions, respectively. The mechanical characterization of composite constituent materials is carried out together with tensile and direct shear tests. Concerning mechanical interpretation of the tests, within a mode II fracture mechanics, and assuming a trilinear cohesive material law (CML), the stress transfer law between the fibre and the matrix is back calibrated from single direct shear test results. The CML obtained is employed into a finite-difference model developed for the purpose. Tensile tests are modelled providing adequate boundary conditions. Results satisfactorily agree with the tested behaviour of the FRCM system.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

425-432

Citation:

Online since:

April 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. A. S. Kouris and T. C. Triantafillou, State-of-the-art on strengthening of masonry structures with textile reinforced mortar (TRM),, Construction and Building Materials, vol. 188. Elsevier Ltd, p.1221–1233, Nov. 10, 2018,.

DOI: 10.1016/j.conbuildmat.2018.08.039

Google Scholar

[2] V. Alecci, F. Focacci, L. Rovero, G. Stipo, and M. de Stefano, Extrados strengthening of brick masonry arches with PBO-FRCM composites: Experimental and analytical investigations,, Compos. Struct., vol. 149, p.184–196, Aug. 2016,.

DOI: 10.1016/j.compstruct.2016.04.030

Google Scholar

[3] V. Alecci et al., Experimental investigation on masonry arches strengthened with PBO-FRCM composite,, Compos. Part B Eng., vol. 100, p.228–239, 2016,.

DOI: 10.1016/j.compositesb.2016.05.063

Google Scholar

[4] G. Misseri, L. Rovero, G. Stipo, S. Barducci, V. Alecci, and M. De Stefano, Experimental and analytical investigations on sustainable and innovative strengthening systems for masonry arches,, Compos. Struct., vol. 210, 2019,.

DOI: 10.1016/j.compstruct.2018.11.054

Google Scholar

[5] S. Barducci, V. Alecci, M. De Stefano, G. Misseri, L. Rovero, and G. Stipo, Experimental and Analytical Investigations on Bond Behavior of Basalt-FRCM Systems,, J. Compos. Constr., vol. 24, no. 1, p.04019055, Feb. 2020,.

DOI: 10.1061/(asce)cc.1943-5614.0000985

Google Scholar

[6] N. Gattesco and I. Boem, Review of experimental tests and numerical study on masonry vaults reinforced through fiber-reinforced mortar coating,, Bull. Earthq. Eng., vol. 17, no. 7, p.4027–4048, Jul. 2019,.

DOI: 10.1007/s10518-019-00619-y

Google Scholar

[7] I. Boem and N. Gattesco, Cyclic behavior of masonry barrel vaults strengthened through Composite Reinforced Mortar, considering the role of the connection with the abutments,, Eng. Struct., vol. 228, p.111518, Feb. 2021,.

DOI: 10.1016/j.engstruct.2020.111518

Google Scholar

[8] N. Gattesco, I. Boem, and V. Andretta, Experimental behaviour of non-structural masonry vaults reinforced through fibre-reinforced mortar coating and subjected to cyclic horizontal loads,, Eng. Struct., vol. 172, p.419–431, Oct. 2018,.

DOI: 10.1016/j.engstruct.2018.06.044

Google Scholar

[9] A. Dalalbashi, B. Ghiassi, D. V. Oliveira, and A. Freitas, Fiber-to-mortar bond behavior in TRM composites: Effect of embedded length and fiber configuration,, Compos. Part B Eng., vol. 152, p.43–57, Nov. 2018,.

DOI: 10.1016/j.compositesb.2018.06.014

Google Scholar

[10] A. Dalalbashi, B. Ghiassi, D. V. Oliveira, and A. Freitas, Effect of test setup on the fiber-to-mortar pull-out response in TRM composites: Experimental and analytical modeling,, Compos. Part B Eng., vol. 143, p.250–268, Jun. 2018,.

DOI: 10.1016/j.compositesb.2018.02.010

Google Scholar

[11] P. D. Askouni and C. (Corina) G. Papanicolaou, Textile Reinforced Mortar-to-masonry bond: Experimental investigation of bond-critical parameters,, Constr. Build. Mater., vol. 207, p.535–547, May 2019,.

DOI: 10.1016/j.conbuildmat.2019.02.102

Google Scholar

[12] T. D'Antino, C. Carloni, L. H. Sneed, and C. Pellegrino, Matrix – fiber bond behavior in PBO FRCM composites : A fracture mechanics approach,, Eng. Fract. Mech., vol. 117, p.94–111, 2014,.

DOI: 10.1016/j.engfracmech.2014.01.011

Google Scholar

[13] A. S. Calabrese, P. Colombi, and T. D'Antino, Analytical solution of the bond behavior of FRCM composites using a rigid-softening cohesive material law,, Compos. Part B Eng., vol. 174, p.107051, Oct. 2019,.

DOI: 10.1016/j.compositesb.2019.107051

Google Scholar

[14] G. Misseri, L. Rovero, and S. Galassi, Analytical modelling bond behaviour of polybenzoxazole (PBO) and glass Fibre Reinforced Cementitious Matrix (FRCM) systems coupled with cement and gypsum matrixes: Effect of the Cohesive Material Law (CML) shape,, Compos. Part B Eng., vol. 223, p.109090, Oct. 2021,.

DOI: 10.1016/j.compositesb.2021.109090

Google Scholar

[15] F. Nerilli, S. Marfia, and E. Sacco, Micromechanical modeling of the constitutive response of FRCM composites,, Constr. Build. Mater., vol. 236, p.117539, Mar. 2020,.

DOI: 10.1016/j.conbuildmat.2019.117539

Google Scholar

[16] C. Caggegi et al., Experimental analysis on tensile and bond properties of PBO and aramid fabric reinforced cementitious matrix for strengthening masonry structures,, Compos. Part B Eng., vol. 127, p.175–195, Oct. 2017,.

DOI: 10.1016/j.compositesb.2017.05.048

Google Scholar

[17] F. G. Carozzi et al., Experimental investigation of tensile and bond properties of Carbon-FRCM composites for strengthening masonry elements,, Compos. Part B Eng., vol. 128, p.100–119, Nov. 2017,.

DOI: 10.1016/j.compositesb.2017.06.018

Google Scholar

[18] S. De Santis et al., Round Robin Test on tensile and bond behaviour of Steel Reinforced Grout systems,, Compos. Part B Eng., vol. 127, p.100–120, Oct. 2017,.

DOI: 10.1016/j.compositesb.2017.03.052

Google Scholar

[19] M. Malena, M. Sangirardi, and G. de Felice, Steel Reinforced Grout under uniaxial load: Experimental evidences and numerical modelling,, Constr. Build. Mater., vol. 227, p.116808, Dec. 2019,.

DOI: 10.1016/j.conbuildmat.2019.116808

Google Scholar

[20] P. D. Askouni and C. Corina" G. Papanicolaou, "Role of Mortar Joints in Textile Reinforced Mortar-to-Masonry Bond,, J. Compos. Constr., vol. 24, no. 6, p.04020069, Dec. 2020,.

DOI: 10.1061/(asce)cc.1943-5614.0001056

Google Scholar

[21] F. Ceroni and P. Salzano, Design provisions for FRCM systems bonded to concrete and masonry elements,, Compos. Part B Eng., vol. 143, p.230–242, Jun. 2018,.

DOI: 10.1016/j.compositesb.2018.01.033

Google Scholar

[22] American Concrete Institute (ACI), Guide to Design and Construction of Externally Bonded Fabric-Reinforced Cementitious Matrix (FRCM) Systems for Repair and Strengthening Concrete and Masonry Structures Guide to Design and Construction of Externally Bonded FRCM Systems for Repair and Stren. (2013).

DOI: 10.1016/j.prostr.2018.11.027

Google Scholar

[23] R. T. C. 250_CSM, Recommendation of RILEM Technical Committee 250-CSM: Test method for Textile Reinforced Mortar to substrate bond characterization,, Mater. Struct. Constr., vol. 51, no. 4, p.1–9, Aug. 2018,.

DOI: 10.1617/s11527-018-1216-x

Google Scholar

[24] D. Arboleda, F. G. Carozzi, A. Nanni, and C. Poggi, Testing Procedures for the Uniaxial Tensile Characterization of Fabric-Reinforced Cementitious Matrix Composites,, J. Compos. Constr., vol. 20, no. 3, p.04015063, Jun. 2016,.

DOI: 10.1061/(asce)cc.1943-5614.0000626

Google Scholar

[25] F. Focacci, T. D'Antino, and C. Carloni, The role of the fiber–matrix interfacial properties on the tensile behavior of FRCM coupons,, Constr. Build. Mater., vol. 265, p.120263, Dec. 2020,.

DOI: 10.1016/j.conbuildmat.2020.120263

Google Scholar

[26] S. De Santis et al., Acceptance Criteria for Tensile Characterization of Fabric-Reinforced Cementitious Matrix Systems for Concrete and Masonry Repair,, 2018,.

DOI: 10.1061/(asce)cc.1943-5614.0000886

Google Scholar

[27] X. Zou, L. H. Sneed, and T. D'Antino, Full-range behavior of fiber reinforced cementitious matrix (FRCM)-concrete joints using a trilinear bond-slip relationship,, Compos. Struct., vol. 239, May 2020,.

DOI: 10.1016/j.compstruct.2020.112024

Google Scholar

[28] L. Rovero, S. Galassi, and G. Misseri, Experimental and analytical investigation of bond behavior in glass fiber-reinforced composites based on gypsum and cement matrices,, Compos. Part B Eng., vol. 194, p.108051, Aug. 2020,.

DOI: 10.1016/j.compositesb.2020.108051

Google Scholar

[29] A. D'Ambrisi, L. Feo, and F. Focacci, Bond-slip relations for PBO-FRCM materials externally bonded to concrete,, Compos. Part B Eng., vol. 43, no. 8, p.2938–2949, Dec. 2012,.

DOI: 10.1016/j.compositesb.2012.06.002

Google Scholar

[30] CEN, EN 1015-11 Methods of test for mortar for masonry - Part 11: Determination of flexural and compressive strength of hardened mortar,, 2019, Accessed: Nov. 12, 2020. [Online]. Available: http://store.uni.com/catalogo/uni-en-1015-11-(2019).

DOI: 10.3403/01905442

Google Scholar

[31] C. Soranakom and B. Mobasher, Modeling of tension stiffening in reinforced cement composites: Part I. Theoretical modeling,, Mater. Struct. 2010 439, vol. 43, no. 9, p.1217–1230, Apr. 2010,.

DOI: 10.1617/s11527-010-9594-8

Google Scholar

[32] P. Colombi and T. D'Antino, Analytical assessment of the stress-transfer mechanism in FRCM composites,, Compos. Struct., vol. 220, p.961–970, Jul. 2019,.

DOI: 10.1016/j.compstruct.2019.03.074

Google Scholar

[33] E. Grande and G. Milani, Numerical simulation of the tensile behavior of FRCM strengthening systems,, Compos. Part B Eng., vol. 189, p.107886, May 2020,.

DOI: 10.1016/j.compositesb.2020.107886

Google Scholar